They proposed a new communication medium using cladded fiber cables.
∙ A. Kao and Bockham
∙ B. Maiman, Kao and Bockham
∙ C. Kapron, Keck and Maurer
∙ D. Maiman and Schawlow

1 Answer

Answer :

∙ A. Kao and Bockham

Related questions

Description : They experimented with light transmission cables through bundle of fibers and lead to the development of flexible fiberscope. ∙ A. Townes, Schawlow and Kao ∙ B. Maiman, Kao and Bockham ∙ C. Maurer, Kapron and Keck ∙ D. Van Heel, Hopkins and Kapany

Last Answer : D. Van Heel, Hopkins and Kapany

Description : Developed an optical fiber with losses less that 2 dB/km ∙ A. Kao and Bockham ∙ B. Maiman, Kao and Bockham ∙ C. Maiman and Schawlow ∙ D. Kapron, Keck and Maurer

Last Answer : ∙ A. Kao and Bockham

Description : They wrote a paper describing how it was possible to use stimulated emission for amplifying light waves (laser) as well as microwaves (maser). ∙ A. Theodore Maiman ∙ B. KC Kao and GA Bockham ∙ C. Charles Townes and Arthur Schawlow ∙ D. Kapron, Keck and Maurer

Last Answer : C. Charles Townes and Arthur Schawlow

Description : They were granted patents for scanning and transmitting television images through uncoated fiber cables. ∙ A. Baird and Hansel ∙ B. Bockham and Kao ∙ C. Kapron and Keck

Last Answer : A. Baird and Hansel

Description : He coined the term “fiber optics” in 1956. ∙ A. Kapany ∙ B. Kao ∙ C. Bockham ∙ D. Keck

Last Answer : ∙ A. Kapany

Description : Proposed the use of clad glass fiber as a dielectric waveguide a. Karpon and Keck b. Karpon and Bockham c. Bockham and Kao d. Kao and Keck

Last Answer : c. Bockham and Kao

Description : Proposed the use of clad glass fiber as a dielectric waveguide a. Karpon and Keck b. Karpon and Bockham c. Bockham and Kao d. Kao and Keck

Last Answer : c. Bockham and Kao

Description : Proposed the use of a clad glass fiber as a dielectric waveguide. A. Kao and Keck B. Karpon and Keck C. Karpon and Bockham D. Bockham and Kao

Last Answer : D. Bockham and Kao

Description : They proposed a new communication medium using cladded fiber cables.

Last Answer : Kao and Bockham

Description : The scientist who built the first optical maser ∙ A. Charles Townes ∙ B. GA Bockham ∙ C. Theodore Maiman ∙ D. ACS Van Heel

Last Answer : ∙ C. Theodore Maiman

Description : It is analogous to power dissipation to copper cables, impurities in the fiber absorb the light and covert it to heat. ∙ A. power loss ∙ B. absorption loss ∙ C. resistive loss ∙ D. heat loss

Last Answer : B. absorption loss

Description : Fiber-optic cables with attenuation of 1.8, 3.4, 5.9 and 18 dB are linked together. The total loss is ∙ A. 7.5 dB ∙ B. 19.8 dB ∙ C. 29.1 dB ∙ D. 650 dB

Last Answer : C. 29.1 dB

Description : Fiber-optic cables with attenuations of 1.8, 3.4, 5.9, and 18 dB are linked together. The total loss is ∙ a. 7.5 dB ∙ b. 19.8 dB ∙ c. 29.1 dB ∙ d. 650 dB

Last Answer : ∙ c. 29.1 dB

Description : Fiber optic cables operate at frequencies near ∙ a. 20 MHz ∙ b. 200 MHz ∙ c. 2G Hz ∙ d. 800 THz

Last Answer : ∙ d. 800 THz

Description : Under normal condition, a single fiber should not be used for a two-way communication mainly because of ∙ a. Loss ∙ b. Fading ∙ c. Noise ∙ d. Attenuation

Last Answer : ∙ c. Noise

Description : In fiber optics, PCS stands for ∙ a. Plastic-clad-silica ∙ b. Polyethylene-clad-silica ∙ c. Personal carrier system ∙ d. Personal communication

Last Answer : ∙ a. Plastic-clad-silica

Description : Which of the following cables will have the highest launch power capability? ∙ A. 50/125/0.2 ∙ B. 85/125/0.275 ∙ C. 62.5/125/0.275 ∙ D. 100/140/0.3

Last Answer : A. 50/125/0.2

Description : Chromatic dispersion can be eliminated by __________. ∙ A. using a monochromatic light source ∙ B. using a very small numerical aperture fiber ∙ C. using a graded-index fiber ∙ D. using a very sensitive photo detector

Last Answer : A. using a monochromatic light source

Description : An important requirement for successful transmission system using light ∙ a. Powerful, reliable light source ∙ b. Strong glass ∙ c. Reliable, high cost transmission medium ∙ d. Powerful regenerators

Last Answer : a. Powerful, reliable light source

Description : Developed the first laser a. Charles Townes b. Theodore Maiman c. Gordon McKenzie d. Albert Einstein

Last Answer : b. Theodore Maiman

Description : The use of solitons on fiber-optic cables is: a. common b. experimental c. obsolete d. not possible

Last Answer : b. experimental

Description : Fiber-optic cables do not: a. carry current b. cause crosstalk c. generate EMI d. all of the above

Last Answer : d. all of the above

Description : The term power budgeting refers to ∙ A. the cost of cable, connectors, equipment and installation ∙ B. the loss of power due to defective components ∙ C. the total power available minus the attenuation losses ∙ D. the comparative costs of fiber and copper installations

Last Answer : C. the total power available minus the attenuation losses

Description : Which type of fiber-optic cable is the most widely used? ∙ A. single-mode step-index ∙ B. multimode step-index ∙ C. single-mode graded index ∙ D. multimode graded index

Last Answer : B. multimode step-index

Description : EMD is best described by which statement? ∙ A. 70 percent of the core diameter and 70% of the fiber NA should be filled with light. ∙ B. 70 percent of the fiber diameter and 70% of the ... be measured at the output. ∙ D. 70 percent of the unwanted wavelengths should be attenuated by the fiber.

Last Answer : 70 percent of the core diameter and 70% of the fiber NA should be filled with light.

Description : Which of the following is not a major benefit of a fiber-optic cable? ∙ A. immunity from interference ∙ B. no electrical safety problems ∙ C. excellent data security ∙ D. lower cost

Last Answer : ∙ D. lower cost

Description : The core of fiber-optic cable is surrounded by ∙ A. wire braid shield ∙ B. Keviar ∙ C. cladding ∙ D. plastic insulation

Last Answer : ∙ C. cladding

Description : The core of a fiber-optic cable is made of ∙ A. air ∙ B. glass ∙ C. diamond ∙ D. quartz

Last Answer : B. glass

Description : Which of the following is not a common type of fiber-optic cable? ∙ A. single-mode step-index ∙ B. multimode graded-index ∙ C. single-mode graded-index ∙ D. multimode step-index

Last Answer : . single-mode graded-index

Description : The operation of a fiber-optic cable is based on the principle of ∙ A. refraction ∙ B. reflection ∙ C. dispersion ∙ D. absorption

Last Answer : A. refraction

Description : A popular light wavelength fiber-optic cable is ∙ A. 0.7 micrometer ∙ B. 1.3 micrometer ∙ C. 1.5 micrometer ∙ D. 1.8 micrometer

Last Answer : B. 1.3 micrometer

Description : Which type of fiber optic cable is best for very high speed data? ∙ A. single-mode step-index ∙ B. multimode step-index ∙ C. single-mode graded-index ∙ D. multimode graded-index

Last Answer : A. single-mode step-index

Description : When connector losses, splice losses and coupler losses are added, what is the limiting factor? ∙ A. source power ∙ B. fiber attenuation ∙ C. connector and splice loss ∙ D. detector sensitivity

Last Answer : D. detector sensitivity

Description : For a 300-m optical fiber cable with a bandwidth distance product of 600 MHz-km, determine the bandwidth. ∙ A. 5 GHz ∙ B. 1 GHz ∙ C. 2 GHz

Last Answer : C. 2 GHz

Description : It indicates what signal frequencies can be propagated through a given distance of fiber cable. ∙ A. Bandwidth Distance Product ∙ B. Pulse width dispersion ∙ C. Rise time ∙ D. Cutoff frequency

Last Answer : A. Bandwidth Distance Product

Description : How can modal dispersion reduced entirely? ∙ A. Use a graded index fiber ∙ B. Use a single-mode fiber ∙ C. Use a monochromatic light source ∙ D. Use a very sensitive light detector

Last Answer : Use a single-mode fiber

Description : It is caused by the difference in the propagation time of light rays that take different paths down the fiber. ∙ A. modal dispersion ∙ B. microbending ∙ C. Rayleigh scattering ∙ D. chromatic dispersion

Last Answer : A. modal dispersion

Description : These bends are caused by excessive pressure and tension and generally occur while fiber are bent during handling or installation. ∙ A. microbending ∙ B. macrobending ∙ C. constant-radius bending ∙ D. kinks

Last Answer : C. constant-radius bending

Description : Light rays that are emitted simultaneously from an LED and propagated down an optical fiber do not arrive at the far end of the fiber at the same time results to ∙ A. intramodal dispersion ∙ B. pulse length dispersion ∙ C. modal dispersion ∙ D. wavelength dispersion

Last Answer : D. wavelength dispersion

Description : Which type of fiber-optic cable has the least modal dispersion? ∙ A. single-mode step-index ∙ B. multimode step-index ∙ C. single-mode graded-index ∙ D. multimode graded-index

Last Answer : A. single-mode step-index

Description : It is caused by valence electrons in the silica material from which the fiber are manufactured. ∙ A. ion resonance absorption ∙ B. infrared absorption ∙ C. ultraviolet absorption ∙ D. visible light absorption

Last Answer : ultraviolet absorption

Description : A type of index of an optical fiber that has no cladding and whose central core has a non-uniform refractive index. ∙ A. graded index ∙ B. multimode ∙ C. single mode ∙ D. step-index

Last Answer : ∙ A. graded index

Description : A type of index profile of an optical fiber that has a central core and outside cladding with a uniform refractive index ∙ A. multimode ∙ B. graded index ∙ C. step-index ∙ D. single mode

Last Answer : ∙ C. step-index

Description : It is a graphical representation of the magnitude of the refractive index across the fiber. ∙ A. mode ∙ B. index profile ∙ C. numerical aperture ∙ D. refractive index

Last Answer : B. index profile

Description : More than one path for light rays to take down the fiber ∙ A. Multimode ∙ B. Step-index ∙ C. Single mode

Last Answer : A. Multimode

Description : Only one path for light rays to take down the fiber ∙ A. Multimode ∙ B. Step-index ∙ C. Single mode ∙ D. Graded index

Last Answer : C. Single mode

Description : The effect of a large magnitude of the numerical aperture ∙ A. The amount of external light the fiber will accept is greater. ∙ B. The amount of external light the fiber will accept is less. ... The amount of modal dispersion will be less. ∙ D. The amount of chromatic dispersion will be greater.

Last Answer : The amount of external light the fiber will accept is greater.

Description : The maximum angle in which external light rays may strike the air/glass interface and still propagate down the fiber. ∙ A. Acceptance cone half-angle ∙ B. Acceptance cone ∙ C. Critical angle ∙ D. Angle of incidence

Last Answer : A. Acceptance cone half-angle

Description : A fiber-optic cable has a loss of 15 dB/km. The attenuation in a cable 1000 ft. long is ∙ A. 4.57 dB ∙ B. 9.3 dB ∙ C. 24 dB ∙ D. 49.2 dB

Last Answer : A. 4.57 dB