No liquid can exist as liquid at
 (a) – 273 °K
 (b) vacuum
 (c) zero pressure
 (d) centre of earth
 (e) in space.

1 Answer

Answer :

Answer : c

Related questions

Description : Absolute zero pressure will occur  (a) at sea level  (b) at the center of the earth  (c) when molecular momentum of the system becomes zero  (d) under vacuum conditions  (e) at a temperature of – 273 °K

Last Answer : Answer : c

Description : The condition of perfect vacuum, i.e., absolute zero pressure can be attained at  (a) a temperature of – 273.16°C  (b) a temperature of 0°C  (c) a temperature of 273 °K  (d) a negative pressure and 0°C temperature  (e) can’t be attained.

Last Answer : Answer : a

Description : Absolute zero, pressure will occur, when the molecular momentum of the system becomes zero. A liquid will cease to exist as liquid at (A) High vacuum (B) Zero pressure (C) 0°K (D) Earth's centre

Last Answer : (B) Zero pressure

Description : The unit’of universal gas constant is  (a) watts/°K  (b) dynes/°C  (c) ergscm/°K  (d)erg/°K  (e) none of the above.

Last Answer : Answer : d

Description : The value of the product of molecular weight and the gas characteristic constant for all the gases in S.I. units is  (a) 29.27 J/kmol°K  (b) 83.14J/kmol°K  (c) 848J/kmol°K  (d) All J/kmol °K  (e) 735 J/kmol °K.

Last Answer : Answer : b

Description : What is the formula to convert °F to °C?  a) °C = °F + 273  b) °C = 5/9 (°F - 32)  c) °C = 9/5 (°F)+32  d) None of the above

Last Answer : °C = 5/9 (°F - 32)

Description : What is the formula to convert °C to °F?  a) °F = °C + 273  b) °F = 5/9 (°C - 32)  c) °F = 9/5 (°C)+32  d) None of the above

Last Answer : momentum

Description : Convert the change of temperature from 20˚C to 30˚C to Kelvin scale.  a. 10 K  b. 293 K  c. 303 K  d. 273 K

Last Answer : 10 K

Description : What is the unique state at which solid, liquid and gaseous phase can go co-exist in equilibrium?  a. Triple point  b. Critical point  c. Boiling point  d. Pour point

Last Answer : Triple point

Description : Super conduction in metals is observed at a temperature of __________ °K. (A) 100 (C) About 273 (D) About 373

Last Answer : (B) >100

Description : A unit of pressure used in high vacuum technology, which is equal to 1mmhg.  a. specific heat  b. isometric  c. isobaric  d. torr

Last Answer : torr

Description : A vacuum is connected to a tank reads 3kpa at a location w/ the barametric pressure reading is 75mmhg. Determined the P absolute in the tank  a. 70.658 kpa  b. 68 kpa  c. 58.78 kap  d. None of the above Pabs = Patm – Pvacuum

Last Answer : 70.658 kpa

Description : _________is the partial pressure of water vapor at the existing temperature divided by the equilibrium vapor pressure of water at the existing temperature.  a. vacuum pressure  b. relative humidity  c. absolute pressure  d. vapor pressure

Last Answer : relative humidity

Description : The difference between the absolute pressure and the atmospheric pressure is called the _____ pressure.  A. Gage  B. Normal  C. Standard  D. Vacuum

Last Answer : Gage

Description : What is the pressure below atmospheric pressure called?  A. Gage pressure  B. Absolute pressure  C. Atmospheric pressure  D. Vacuum pressure

Last Answer : Vacuum pressure

Description : What is considered as the actual pressure at a given position and is measured relative to absolute vacuum?  A. Gage pressure  B. Absolute pressure  C. Atmospheric pressure  D. Vacuum pressure

Last Answer : Absolute pressure

Description : The gas in a constant gas thermometer cooled to absolute zero would have _________.  a. no volume  b. no pressure  c. zero temperature at all scales  d. none of the above

Last Answer : no pressure

Description : Barometric pressure is equal to  (a) 760 mm Hg  (b) zero mm Hg  (c) 735.6 mm Hg  (d) 1 mm Hg  (e) 100mm Hg.

Last Answer : Answer : a

Description : If a gas is heated against a pressure, keeping the volume constant, then work done will be equal to  (a) + v  (b) – ve  (c) zero  (d) pressure x volume  (e) any where between zero and infinity.

Last Answer : Answer : c

Description : According to kinetic theory of gases, the absolute zero temperature is attained when  (a) volume of the gas is zero  (b) pressure of the gas is zero  (c) kinetic energy of the molecules is zero  (d) specific heat of gas is zero  (e) mass is zero.

Last Answer : Answer : c

Description : If a fluid expands suddenly into vacuum through an orifice of large dimension, then such a process is called  (a) free expansion  (b) hyperbolic expansion  (c) adiabatic expansion  (d) parabolic expansion  (e) throttling.

Last Answer : Answer : a

Description : An adiabatic wall is one which  (a) prevents thermal interaction  (b) permits thermal interaction  (c) encourages thermal interaction  (d) discourages thermal interaction  (e) dos not exist.

Last Answer : Answer : a

Description : A diathermic wall is one which  (a) prevents thermal interaction  (b) permits thermal interaction  (c) encourages thermal interaction  (d) discourages thermal interaction  (e) does not exist.

Last Answer : Answer : b

Description : Zeroth law of thermodynamics  (a) deals with conversion of mass and energy  (b) deals with reversibility and irreversibility of process  (c) states that if two systems are both in equilibrium with a ... in thermal equilibrium with each other  (d) deals with heat engines  (e) does not exist.

Last Answer : Answer : c

Description : Which of the following is standard temperature and pressure (STP)?  A. 0 degree Celsius and one atmosphere  B. 32 degree Fahrenheit and zero pressure  C. 0 degree Kelvin and one atmosphere  D. 0 degree Fahrenheit and zero pressure

Last Answer : 0 degree Celsius and one atmosphere

Description : What refers to a liquid whose temperature is lower than saturation temperature corresponding to the existing pressure?  a. Subcooled liquid  b. Saturated liquid  c. Pure liquid  d. Compressed liquid

Last Answer : Subcooled liquid

Description : ____________is the difference between the saturation temperature for the given pressure and the actual sub cooled liquid temperature.  a) Degrees of Superheat, °SH  b) Degrees of Sub cooled, °SB  c) Both a and b  d) None of the above

Last Answer : Degrees of Sub cooled, °SB

Description : __________________ represents the highest pressure and highest temperature at which liquid and vapor can coexist in equilibrium.  a) Critical Point  b) Boiling Point  c) Quality Point  d) None of the above

Last Answer : Critical Point

Description : __________________ is a liquid at the saturations which has temperature equal to the boiling point corresponding to the existing pressure.  a. Saturation Temperature  b. Sub cooled Liquid  c. Compressed Liquid  d. Saturated Liquid

Last Answer : Saturated Liquid

Description : _________________ is one which has a pressure higher than the saturation pressure corresponding to the existing temperature.  a. Saturation Temperature  b. Sub cooled Liquid  c. Compressed Liquid  d. Saturated Liquid

Last Answer : Compressed Liquid

Description : ________________ is one which has a temperature lower than the saturation temperature corresponding to the existing pressure.  a. Saturation Temperature  b. Sub cooled Liquid  c. Compressed Liquid  d. Saturated Liquid

Last Answer : Sub cooled Liquid

Description : In thermodynamics, a throttling process, also called a _________, is a type of isenthalpic process where a liquid or gas is cooled as it passes from a higher pressure state to a lower pressure state.  a. Rankine Process  b. Carnot Cycle  c. Joule-Thomson process  d. Refrigeration process

Last Answer : Joule-Thomson process

Description : The pressure of the vapor phase of a substance that is in equilibrium with the liquid or solid phase.  a. Phase Pressure  b. Equilibrium Vapor Pressure  c. Specific Pressure  d. Equilibrium Phase Pressure

Last Answer : Equilibrium Vapor Pressure

Description : If a system after undergoing a series of processes, returns to the initial state then  (a) process is thermodynamically in equilibrium  (b) process is executed in closed system cycle  (c) its entropy will ... sum of heat and work transfer will be zero  (e) no work will be done by the system.

Last Answer : Answer : d

Description : For a thermodynamic process to be reversible, the temperature difference between hot body and working substance should be  (a) zero  (b) minimum  (d) maximum  (d) infinity  (e) there is no such criterion.

Last Answer : Answer : a

Description : An ideal gas is compressed in a cylinder so well insulated that there is essentially no heat transfer. The temperature of gas  a. Remains constant  b. increases  c. decreases  d. is basically zero

Last Answer : increases

Description : _________ is the transition of a given substance from the solid to the gas phase with no intermediate liquid stage.  a. Convection  b. Conduction  c. Radiation  d. Sublimation

Last Answer : Sublimation

Description : Liquid fuels have higher calorific value than solid fuels.  A. Yes  B. No

Last Answer : Answer: A

Description : I kgf/cm2 is equal to  (a) 760 mm Hg  (b) zero mm Hg  (c) 735.6 mm Hg  (d) 1 mm Hg  (e) l00 mm Hg.

Last Answer : Answer : c

Description : For reversible adiabatic process, change in entropy is  (a) maximum  (b) minimum  (c) zero  (d) unpredictable  (e) negative

Last Answer : Answer : c

Description : In a free expansion process  (a) work done is zero  (b) heat transfer is zero  (c) both (a) and (b) above  (d) work done is zero but heat increases  (e) work done is zero but heat decreases.

Last Answer : Answer : c

Description : Work done is zero for the following process  (a) constant volume  (b) free expansion  (c) throttling  (d) all Of the above  (e) none of the above.

Last Answer : Answer : d

Description : Work done in a free expansion process is  (a) + ve  (b) -ve  (c) zero  (d) maximum  (e) minimum.

Last Answer : Answer : c

Description : A temperature scale whose zero point is absolute zero, the temperature of “0” entropy at which all molecular motion stops.  a. Celsius  b. Fahrenheit  c. Kelvin  d. Rankine

Last Answer : Kelvin

Description : During the adiabatic process, which of the following is the change in entropy?  a. zero  b. greater than zero  c. less than zero  d. infinity

Last Answer : zero

Description : An ideal gas is compresses isothermally. The enthalpy change is  a. Always negative  b. Always positive  c. zero  d. undefined

Last Answer : zero

Description : Which of the following relations is not applicable in a free expansion process?  a. Heat is rejected to zero  b. Work done is zero  c. Change in temperature is zero  d. Heat supplied is zero

Last Answer : Change in temperature is zero

Description : Which law that states “Entropy of all perfect crystalline solids is zero at absolute zero temperature”?  a. Zeroth law of thermodynamics  b. First law of thermodynamics  c. Second law of thermodynamics  d. Third law of thermodynamics

Last Answer : Third law of thermodynamics

Description : Which of the following is the work done for a closed reversible isometric system?  a. negative  b. positive  c. zero  d. undefined

Last Answer : zero

Description : What happens to the internal energy of water at reference temperature where enthalpy is zero?  a. Becomes negative  b. Becomes positive  c. Remains constant  d. Cannot be defined

Last Answer : Becomes negative