The compression of the gas in two
or more cylinders in place of a single
cylinder compressor
 a. Single Staging
 b. Double Staging
 c. Multistaging
 d. None of the above

1 Answer

Answer :

Multistaging

Related questions

Description : It is used for gas turbines which operates on an open cycle where both the compression and expansion processes take place in rotating machinery.  a. Dual Cycle  b. Otto Cycle  c. Carnot Cycle  d. Brayton Cycle

Last Answer : Brayton Cycle

Description : When the expansion of compression of gas takes place without transfer of heat to or from the gas the process is called  a. reversible  b. adiabatic  c. polytropic  d. isothermal

Last Answer : adiabatic

Description : When the expansion of compression of gas takes place without transfer of heat or from the gas the process is called;  a. Isometric process  b. Isothermal process  c. Isobaric process  d. Adiabatic process

Last Answer : Adiabatic process

Description : An ideal gas is compressed in a cylinder so well insulated that there is essentially no heat transfer. The temperature of gas  a. Remains constant  b. increases  c. decreases  d. is basically zero

Last Answer : increases

Description : Gas is enclosed in a cylinder with a weighted piston as the stop boundary. The gas is heated and expands from a volume of 0.04 m^3 to 0.10 m^3 at a constant pressure of 200kPa.Calculate the work done by the system.  A. 8 kJ  B. 10 kJ  C.12 kJ  D.14 kJ Formula: W = p(V2-V1)

Last Answer : 12 kJ

Description : A gas is enclosed in a cylinder with a weighted piston as the top boundary. The gas is heated and expands from a volume of 0.04 m3 to 0.10 m3 at a constant pressure of 200 kPa. Find the work done on the system.  a. 5 kJ  b. 15 kJ  c. 10 kJ  d. 12 kJ

Last Answer : 12 kJ

Description : A gas is compressed in a cylinder by a movable piston to a volume onehalf its original volume. During the process 300 kJ heat left the gas and internal energy remained same. The work done on gas in Nm will be  (a) 300 Nm  (b) 300,000 Nm  (c) 30 Nm  (d) 3000 Nm  (e) 30,000 Nm.

Last Answer : Answer : b

Description : Assuming compression is according to the Law PV = C, Calculate the initial volume of the gas at a pressure of 2 bars w/c will occupy a volume of 6m³ when it is compressed to a pressure of 42 Bars.  a) 130m³  b) 136m³  c) 120m³  d) 126m³ Formula: P1V1/T1 =P2V2/T2

Last Answer : 126m³

Description : Helium ( R= 0.4698 BTU/lbm-˚R ) is compressed isothermally from 14.7 psia and 68 ˚F. The compression ratio is 1:4. Calculate the work done by the gas.  A. –1454 BTU/lbm  B. -364 BTU/lbm  C.-187BTU/lbm  D.46.7 BTU/lbm Formula: W = RT ln (V2/V1)

Last Answer : -364 BTU/lbm

Description : During which of the following process does heat rejection takes place in Carnot cycle?  A. Isothermal expansion  B. Isentropic expansion  C. Isothermal compression  D. Isentropic compression

Last Answer : Answer: C

Description : Open system usually encloses which of the following devices?  A. Compressor  B. Turbine  C. Nozzle  D. All of the above

Last Answer : All of the above

Description : Minimum work in compressor is possible when the value of adiabatic index n is equal to  (a) 0.75  (b) 1  (c) 1.27  (d) 1.35  (e) 2.

Last Answer : Answer : b

Description : A perfect gas at 27°C is heated at constant pressure till its volume is double. The final temperature is  (a) 54°C  (b) 327°C  (c) 108°C  (d) 654°C  (e) 600°C

Last Answer : Answer : b

Description : A cylinder contains oxygen at a pressure of 10 atm and a temperature of 300 K. The volume of the cylinder is 10 liters. What is the mass of the oxygen in grams? Molecular weight (MW) of oxygen is 32 g/mole?  a. 125.02  b. 130.08  c. 135.05  d. 120.04

Last Answer : 130.08 {(10atm)(10)(32)/(0.0821) (300K)}

Description : For same compression ratio and for same heat added  (a) Otto cycle is more efficient than Diesel cycle  (b) Diesel cycle is more efficient than Otto cycle  (c) efficiency depends on other factors  (d) both Otto and Diesel cycles are equally efficient  (e) none of the above.

Last Answer : Answer : a

Description : Executes the entire cycle in just two strokes the power stroke and the compression stroke.  a. One-stroke engine  b. Two-stroke engine  c. Four-stroke engine  d. Eight-stroke engine

Last Answer : Two-stroke engine

Description : Which of the following engines is the most efficient?  a. Isobaric expansion  b. Adiabatic compression  c. Adiabatic expansion  d. Isothermal expansion

Last Answer : Isobaric expansion

Description : Water vapor at 100 KPa and 150°C is compressed isothermally until half the vapor has condensed. How much work must be performed on the steam in this compression process per kilogram?  a) -1384.7 kJ  b) 1384.7 kJ  c) -2384.7 kJ  d) 2384.7 kJ

Last Answer : -1384.7 kJ

Description : What is a form of mechanical work which is related with the expansion and compression of substances?  A. Boundary work  B. Thermodynamic work  C. Phase work  D. System work

Last Answer : Boundary work

Description : The efficiency of Diesel cycle depends upon  A. temperature limits  B. pressure ratio  C. compression ratio  D. cut-off ratio and compression ratio

Last Answer : Answer: D

Description : Otto cycle efficiency is higher than Diesel cycle efficiency for the same compression ratio and heat input because in Otto cycle  A. combustion is at constant volume  B. expansion and compression are isentropic  C. maximum temperature is higher  D. heat rejection is lower

Last Answer : Answer: D

Description : The compression ratio for Diesel engines is  A. 3 to 6  B. 5 to 8  C. 15 to 20  D. 20 to 30

Last Answer : Answer: C

Description : A process, in which the temperature of the working substance remains constant during its expansion or compression, is called  A. isothermal process  B. hyperbolic process  C. adiabatic process  D. polytropic process

Last Answer : Answer: A

Description : The compression ratio for petrol engines is  A.3 to 6  B.5 to 8  C.15 to 20  D.20 to 30

Last Answer : Answer: B

Description : In order that a cycle be reversible, following must be satisfied  (a) free expansion or friction resisted expansion/compression process should not be encountered  (b) when heat is being absorbed, temperature of hot ... sub-stance should be same  (d) all of the above  (e) none of the above.

Last Answer : Answer : d

Description : The index of compression n tends to reach ratio of specific heats y when  (a) flow is uniform and steady  (b) process is isentropic  (c) process is isothermal  (d) process ... specific heat does not change with temperature  (e) process is isentropic and specific heat changes with temperature.

Last Answer : Answer : d

Description : State necessity of multistaging and Intercooling of air compressor.

Last Answer : Necessity of multistaging - For producing high pressure i.e. more than 8 bar, single stage air compressor suffers fallowing drawbacksi) Size of cylinder is too large ii) Rise ... also automatically decreased and volumetric efficiency is also decreases. To avoid this intercooling is necessary.

Description : An ideal gas as compared to a real gas at very high pressure occupies  (a) more volume  (b) less volume  (c) same volume  (d) unpredictable behaviour  (e) no such correlation.

Last Answer : Answer : a

Description : Explain the necessity of multi-staging and inter cooling in case of two stage compressor with PV diagram

Last Answer : Necessity of multi staging with intercooling in air compression: The large pressure ratio gives rise in high compression ratio and high discharged temperature which produce adverse effect on the efficiency and ... and saving in work and power multi staging with intercooling is necessary.  

Description : advantages of multi staging of compressor

Last Answer : 1) Reduced work of compression per kg of refrigerant 2) Wall thickness of L.P. cylinder is reduced, since it has to withstand lower pressures. This makes compressor lighter and cheaper. 3) Volumetric ... ) Operating cost is reduced 7) It gives more uniform torque; hence size of flywheel is reduced.

Description : The gas constant (R) is equal to the __________ of two specific heats.  A. sum  B. difference  C. product  D. ratio

Last Answer : Answer: B

Description : According to Avogadro's law  A. the product of the gas constant and the molecular mass of an ideal gas is constant  B. the sum of partial pressure of the mixture of two gases is sum of the ... all gases, at the same temperature and pressure, contain equal number of molecules  D. all of the above

Last Answer : Answer: C

Description : The pressure exerted by an ideal gas is __________ of the kinetic energy of all the molecules contained in a unit volume of gas.  A.one-half  B.one-third  C.two-third  D.three-fourth

Last Answer : Answer: C

Description : Gas turbine cycle consists of  (a) two isothermals and two isentropics  (b) two isentropics and two constant volumes  (c) two isentropics, one constant volume and one constant pressure  (d) two isentropics and two constant pressures  (e) none of the above.

Last Answer : Answer : d

Description : Universal gas constant is defined as equal to product of the molecular weight of the gas and  (a) specific heat at constant pressure  (b) specific heat at constant volume  (c) ratio of two specific heats  (d) gas constant  (e) unity.

Last Answer : Answer : d

Description : According to Avogadro's Hypothesis  (a) the molecular weights of all the perfect gases occupy the same volume under same conditions of pressure and temperature  (b) the sum of partial pressure of ... gases have two values of specific heat  (e) all systems can be regarded as closed systems.

Last Answer : Answer : a

Description : The volume of a gas is directly proportional to the number of molecules of the gas.  a. Ideal gas law  b. Boyle-Mariotte Law  c. Avogadro’s Hypothesis  d. Gay-Lussac’s Law of combining Volumes

Last Answer : Avogadro’s Hypothesis

Description : The molecular number density of an ideal gas at standard temperature and pressure in cm3  a. Froude number  b. Loschmidt number  c. Mach number  d. Reynold number

Last Answer : Loschmidt number

Description : The volume of a gas under constant pressure increases or decrease with temperature.  a. Gay- Lussac’s Law  b. Ideal Gas Law  c. Charles’ Law  d. Boyle’s Law

Last Answer : Charles’ Law

Description : A law relating the pressure, temperature and volume of an ideal gas  a. Gay-Lussac’s Law  b. Ideal gas Law  c. Charles’ Law  d. Boyle’s Law

Last Answer : Ideal gas Law

Description : The heat absorbed by a unit mass of a material at its holding point in order to convert the material into a gas at the same temperature.  a. Latent Heat of Sublimation  b. Latent Heat of Vaporization  c. Latent Heat of Fusion  d. Latent Heat Of Condensation

Last Answer : Latent Heat of Vaporization

Description : Which of the following engines was introduced by a German engineer, Nickolas Otto?  a. Gasoline engine  b. Diesel engine  c. Gas turbine  d. Thermal engine

Last Answer : Gasoline engine

Description : Which of the following engines is the most efficient?  a. Gas turbine  b. Diesel engine  c. Carnot engine  d. Gasoline engine

Last Answer : Carnot engine

Description : Which of the following is least efficient?  a. Gas turbine  b. Diesel engine  c. Carnot engine  d. Gasoline engine

Last Answer : Gasoline engine

Description : Which of the following cannot be a property of a gas?  a. density  b. pressure  c. viscosity  d. temperature

Last Answer : viscosity

Description : Entropy is the measure of:  a. The internal energy of a gas  b. The heat capacity of a substance  c. Randomness or disorder  d. The change of enthalpy of a system

Last Answer : Randomness or disorder

Description : An ideal gas is compresses isothermally. The enthalpy change is  a. Always negative  b. Always positive  c. zero  d. undefined

Last Answer : zero

Description : If the initial volume of an ideal gas is compressed to one-half its original volume and to twice its original temperature, the pressure:  a. doubles  b. halves  c. quadruples  d. triples

Last Answer : quadruples

Description : Which of the following events is heat exchange involved?  a. when there is a phase change  b. when there is a chemical reaction  c. when the gas expands adiabatically  d. when there is difference in temperature

Last Answer : when the gas expands adiabatically

Description : What Law states that the pressure of gas is inversely proportional to its volume at constant temperature?  a. Charles’ law  b. Gay-Lussac’s Law  c. Boyle’s Law  d. Dalton’s Law

Last Answer : Boyle’s Law