The laminar boundary layer thickness in zero pressure gradient flow over a flat plate along the x-direction varies as x0.5 while the thickness of
turbulent boundary layer varies as (where, x = distance from the leading edge)
(A) x1.5
(B) x0.8
(C) x-1.5
(D) x-0.8

1 Answer

Answer :

(B) x0.8

Related questions

Description : The thickness of a laminar boundary layer over a flat plate at two different sections P and Q are 0.8 cm and 2.4 cm respectively. If the section Q is 3.6 m downstream of P, the distance of section P from the leading edge of the plate is (a) 0.32 m (b) 0.22 m (c) 0.40 m (d) 0.53 m

Last Answer : Ans: (c) Correct Answer is: 0.45 m

Description : Pick out the wrong statement. (A) In the McCabe-Thiele diagram for binary distillation, vertical feed line represents saturated liquid feed and horizontal feed line represents saturated vapour feed (B) In ... layers over a flat plate are of equal thickness, if Schmidt number is equal to unity

Last Answer : (C) For Laminar flow over a plate of length L, the local mass transfer co￾efficient at a distance L from the leading edge is 1.5 × 10 -2m/s. Then the average mass transfer co-efficient for the plate is 2 × 10 -2m/s

Description : For flow past a flat plate, if ‘x’ is the distance along the plate in the direction of flow, the boundary layer thickness is proportional to (A) √x (B) 1/√x (C) x (D) 1/x Answe

Last Answer : (A) √x

Description : Pick out the wrong statement. (A) The form drag is dependent upon the occurrence of a wake (B) The shear stress at any given cross-section of a pipe for steady flow (either laminar or turbulent ... of viscosity (D) Existence of the boundary layer in fluid flow is because of viscosity of the fluid

Last Answer : (C) An ideal fluid is the one, which has negligible surface tension and obeys the Newton's law of viscosity

Description : For flow over a flat plate, the ratio of thermal boundary layer thickness, 'xt' and hydrodynamic boundary layer thickness 'x' is equal to (where, NPr = Prandtl number) (A) NPr (B) NPr 1/3 (C) NPr -1 (D) NPr -1/3

Last Answer : (B) NPr 1/3

Description : Nusselt number is related to Grashoff number (Gr) in turbulent & laminar flow respectively, in respect of free convection over a vertical flat plate as (A) Gr0.25, Gr (B) Gr0.25, Gr0.33 (C) Gr, Gr0.25 (D) Gr0.33, Gr0.25

Last Answer : Option A

Description : The boundary layer thickness at a given section along a flat plate __________ with increasing Reynold's number. (A) Increases (B) Decreases (C) Remain same (D) May increase or decrease

Last Answer : (B) Decreases

Description : Bernoulli's equation describes the (A) Mechanical energy balance in potential flow (B) Kinetic energy balance in laminar flow (C) Mechanical energy balance in turbulent flow (D) Mechanical energy balance in boundary layer

Last Answer : (A) Mechanical energy balance in potential flow

Description : In a boundary layer developed along the flow, the pressure decreases in the downstream direction. The boundary layer thickness in this case will (A) Decrease gradually (B) Increase gradually (C) Increase rapidly (D) Remain constant

Last Answer : (B) Increase gradually

Description : Pick out the wrong statement: (A) Greater is the kinematic viscosity of the liquid, greater is the thickness of the boundary layer (B) Blowers develop a maximum pressure of 2 atmospheres ( ... factor in case of turbulent flow of liquids in pipe depends upon relative roughness & Reynolds number

Last Answer : (C) Friction losses in pipe fittings are generally expressed in terms of velocity heads

Description : At the point of boundary layer separation in fluid flow, the (A) Shear stress is maximum (B) Velocity gradient is flat (C) Density variation is maximum (D) Shear stress is zero

Last Answer : Option A

Description : Boundary layer separation is caused by the (A) Reduction of pressure to vapour pressure (B) Boundary layer thickness reducing to zero (C) Adverse pressure gradient (D) Reduction of pressure gradient to zero

Last Answer : (D) Reduction of pressure gradient to zero

Description : Boundary layer separation is caused by the (A) Reduction of pressure below vapour pressure (B) Reduction of pressure gradient to zero (C) Adverse pressure gradient (D) Reduction of boundary layer thickness to zero

Last Answer : (C) Adverse pressure gradient

Description : Transition from laminar flow to turbulent flow is aided by the (A) Surface roughness and curvature (i.e. sharp corners) (B) Vibration (C) Pressure gradient and the compressibility of the flowing medium (D) All (A), (B) & (C)

Last Answer : (D) All (A), (B) & (C)

Description : What is the ratio of displacement thickness to nominal thickness for a linear distribution of velocity in the boundary layer on a flat plate? (A) 0.5 (B) 1 (C) 1.5 (D) 2

Last Answer : (A) 0.5

Description : Consider the following statements in respect of steady laminar flow through a circular pipe: 1. Shear stress is zero on the central axis of the pipe 2. Discharge varies directly with the viscosity of the fluid 3. Velocity is maximum at the ... 2 , 3 & 4 (b) 1 & 3 only (c) 2 & 4 only (d)3 & 4 only

Last Answer : (b) 1 & 3 only

Description : In turbulent flow, a rough pipe has the same friction factor as a smooth pipe (A) In the zone of complete turbulence (B) When the roughness projections are much smaller than the thickness of ... ) Everywhere in the transition zone (D) When the friction factor is independent of the Reynold's number

Last Answer : (B) When the roughness projections are much smaller than the thickness of the laminar film

Description : In case of a plate and frame filter press, filtrate flow through the cake follows __________ flow. (A) Plug (B) Turbulent (C) Laminar (D) None of these

Last Answer : (C) Laminar

Description : In case of laminar flow of fluid through a circular pipe, the (A) Shear stress over the cross-section is proportional to the distance from the surface of the pipe (B) Surface of velocity distribution is a ... occurs at a radial distance of 0.5 r from the centre of the pipe (r = pipe radius)

Last Answer : (B) Surface of velocity distribution is a paraboloid of revolution, whose volume equals half the volume of circumscribing cylinder

Description : Pick out the wrong statement about a streamline. (A) It is always parallel to the main direction of the fluid flow (B) It is a line across which there is no flow and it is ... any two streamlines can be considered to be in isolation and the streamline spacing varies inversely as the velocity

Last Answer : (A) It is always parallel to the main direction of the fluid flow

Description : Nusselt number is related to the Reynolds number (Re) in turbulent & laminar flow respectively as (A) Re0.5, Re0.8 (B) Re0.8, Re-0.5 (C) Re0.8, Re0.5 (D) Re-0.8, Re0.5

Last Answer : (C) Re0.8, Re0.5

Description : 02. The separation of flow occurs when the hydrodynamic boundary layer thickness is reduced to zero. A) Agree B) Disagree

Last Answer : A

Description : In fluid flow, the boundary layer separation cannot occur (A) In case of boundaries experiencing form drag (B) At points of abrupt changes in the flow directions (C) In laminar flow (D) None of theseIn ... B) At points of abrupt changes in the flow directions (C) In laminar flow (D) None of these

Last Answer : (D) None of these

Description : The average heat transfer co-efficient over the entire length of the plate (ha ) and the local heat transfer co-efficient (hL ), in case of heat transfer over a flat plate in laminar zone is related as (A) ha = 0.8hL (B) ha = 2hL (C) ha = hL (D) ha = 5hL

Last Answer : (B) ha = 2hL

Description : The flow in which the particles of a fluid attain such velocities that varies from point to point in magnitude and direction as well as from instant to instant, is known as (A) One dimensional flow (B) Uniform flow (C) Steady flow (D) Turbulent flow

Last Answer : Answer: Option D

Description : The Sieder-Tate correlation for heat transfer in turbulent flow in pipe gives Nu α Re 0.8 , where, Nu is the Nusselt number and Re is the Reynolds number for the flow. Assuming that this relation is valid, the heat transfer co-efficient ... pipe diameter (D) as (A) D-1.8 (B) D-0.2 (C) D0.2 (D) D1.8

Last Answer : (B) D-0.2

Description : For a fluid rotating at constant angular velocity about vertical axis as a rigid body, the pressure intensity varies as the (A) Square of the radial distance (B) Radial distance linearly (C) Inverse of the radial distance (D) Elevation along vertical direction

Last Answer : (A) Square of the radial distance

Description : In a fully turbulent flow (Re > 10 5 ) in a pipe of diameter 'd', for a constant pressure gradient, the dependence of volumetric flow rate of an incompressible fluid is (A) d (B) d 2 (C) d 2.5 (D) d

Last Answer : (C) d 2.5

Description : For laminar flow of a shear thinning liquid in a pipe, if the volumetric flow rate is doubled, the pressure gradient will increase by a factor of (A) 2 (B) < 2 (C) > 2 (D) 1/2

Last Answer : (A) 2

Description : The fluid velocity varies as the cube of the cylindrical pipe diameter in case of steady state laminar flow at constant pressure drop for __________ fluid. (A) Newtonian (B) Pseudo-plastic (C) Dilatent (D) Bingham plastic

Last Answer : (B) Pseudo-plastic

Description : The fluid velocity varies as the square of the cylindrical pipe diameter, in case of steady state laminar flow at constant pressure drop, for __________ fluid. (A) Newtonian (B) Dilatant (C) Pseudo-plastic (D) Non-Newtonian

Last Answer : (A) Newtonian

Description : Discharge in laminar flow through a pipe varies (A) As the square of the radius (B) Inversely as the pressure drop (C) Inversely as the viscosity (D) As the square of the diameter

Last Answer : (A) As the square of the radius

Description : The fluid velocity varies as the square root of the cylindrical pipe diameter in case of steady state laminar flow at constant pressure drop of __________ fluid. (A) Dilatent (B) Pseudo-plastic (C) Bingham plastic (D) Newtonian

Last Answer : (A) Dilatent

Description : In laminar flow through a round tube, the discharge varies (A) Linearly as the viscosity (B) Inversely as the pressure drop (C) Inversely as the viscosity (D) As the square of the radius

Last Answer : (C) Inversely as the viscosity

Description : For an elliptical hole on a flat plate, if width of the hole in direction of the load decrease, Stress Concentration Factor will______ a) Increase b) Decrease c) Remains constant d) Can’t be determined. Varies from material to material

Last Answer : a) Increase

Description : Boundary layer exists in flow (A) Of real fluids (B) Over flat surfaces only (C) In pipes only (D) Of ideal fluids only

Last Answer : (A) Of real fluids

Description : A flow in which the viscosity of fluid is dominating over the inertia force is called (A) Steady flow (B) Unsteady flow (C) Laminar flow (D) Turbulent flow

Last Answer : Answer: Option C

Description : A straight line is obtained on plotting reciprocal of filtration rate vs. the volume of filtrate for __________ flow of filtrate. (A) Compressible cakes and laminar (B) Incompressible cake and laminar (C) Compressible cake and turbulent (D) Incompressible cake and turbulent

Last Answer : (B) Incompressible cake and laminar

Description : Convective heat transfer co-efficient in case of fluid flowing in tubes is not affected by the tube length/diameter ratio, if the flow is in the __________ zone. (A) Laminar (B) Transition (C) Both 'a' & 'b' (D) Highly turbulent

Last Answer : (D) Highly turbulent

Description : Maximum heat transfer rate is achieved in __________ flow. (A) Co-current (B) Counter-current (C) Turbulent (D) Laminar

Last Answer : (C) Turbulen

Description : The Graetz number is concerned with the (A) Mass transfer between a gas and a liquid (B) Absorption with chemical reaction (C) Heat transfer in turbulent flow (D) Heat transfer in laminar flow

Last Answer : (D) Heat transfer in laminar flow

Description : Maximum heat transfer rate is obtained in __________ flow. (A) Laminar (B) Turbulent (C) Creeping (D) Transition region

Last Answer : (B) Turbulent

Description : Dittus-Boelter equation used for the determination of heat transfer co￾efficient is valid (A) For fluids in laminar flow (B) For fluids in turbulent flow (C) When Grashoff number is very important (D) For liquid metals

Last Answer : (B) For fluids in turbulent flow

Description : Critical value of the __________ number governs the transition from laminar to turbulent flow in free convection heat transfer. (A) Grashoff (B) Reynolds (C) Both 'a' & 'b' (D) Prandtl & Grashoff

Last Answer : (D) Prandtl & Grashoff

Description : Fanning equation is given by (∆P/ρ) = 4f (L/D) (v 2 /2gc ). It is applicable to __________ region flow. (A) Transition (B) Laminar (C) Turbulent (D) Both (B) and (C)

Last Answer : (D) Both (B) and (C)

Description : When the pipe Reynold's number is 6000, the flow is generally (A) Viscous (B) Laminar (C) Turbulent (D) Transition

Last Answer : (C) Turbulent

Description : Pick out the correct statement. (A) A forced vortex occurs when fluid rotates as a solid about an axis (B) In laminar flow, Newton's law of viscosity does not apply (C) A free vortex occurs, when fluid rotates as a solid (D) In turbulent flow, there are neither cross-currents nor eddies

Last Answer : (A) A forced vortex occurs when fluid rotates as a solid about an axis

Description : f = 16/NRe , is valid for (A) Turbulent flow (B) Laminar flow through an open channel (C) Steady flow (D) None of these

Last Answer : (D) None of these

Description : In turbulent flow, the (A) Fluid particles move in an orderly manner (B) Momentum transfer is on molecular scale only (C) Shear stress is caused more effectively by cohesion than momentum transfer (D) Shear stresses are generally larger than in a similar laminar flow

Last Answer : (D) Shear stresses are generally larger than in a similar laminar flow