To obtain integrated form of Clausius-Clapeyron equation, ln (P2/P1) = (∆HV/R) (1/T1- 1/T2) from the exact Clapeyron equation, it is assumed that the
(A) Volume of the liquid phase is negligible compared to that of vapour phase
(B) Vapour phase behaves as an ideal gas
(C) Heat of vaporisation is independent of temperature
(D) All (A), (B) & (C)

1 Answer

Answer :

(D) All (A), (B) & (C)

Related questions

Description : Clausius-Clapeyron Equation gives accurate result, when the (A) Vapour pressure is relatively low and the temperature does not vary over wide limits (B) Vapour obeys the ideal gas law and the latent heat of ... is negligible compared with that in the vapour state (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : Which of the following is Clausius-Clapeyron Equation for vaporisation of an ideal gas under the condition that the molar volume of liquid is negligible compared to that of the vapor? (A) d ln p/dt = Hvap/RT2 (B) d ln p/dt = RT2/Hvap (C) dp/dt = RT2/Hvap (D) dp/dt = Hvap/RT2

Last Answer : (A) d ln p/dt = Hvap/RT2

Description : There are 1.36 kg of gas, for which R = 377 J/kg.k and k = 1.25, that undergo a nonflow constant volume process from p1 = 551.6 kPa and t1 = 60°C to p2 = 1655 kPa. During the process the gas is internally stirred and ... (Formula: T2= T1p2/ p1)  a. 999 K  b. 888 K  c. 456 K  d. One of the above

Last Answer : 999 K

Description : Which of the following is the Ideal gas law (equation)?  A. V/T = K  B. V= k*(1/P)  C. P1/T1 = P2/T2  D. PV = nRT

Last Answer : PV = nRT

Description : If the vapour pressure at two temperatures of a solid phase in equilibrium with its liquid phase are known, then the latent heat of fusion can be calculated by the (A) Maxwell's equation (B) Clausius-Clapeyron Equation (C) Van Laar equation (D) Nernst Heat Theorem

Last Answer : B) Clausius-Clapeyron Equation

Description : The expression, ∆G = nRT. ln(P2/P1), gives the free energy change (A) With pressure changes at constant temperature (B) Under reversible isothermal volume change (C) During heating of an ideal gas (D) During cooling of an ideal gas

Last Answer : (A) With pressure changes at constant temperature

Description : Pick out the wrong statement. (A) Enthalpies of all elements in their standard states are assumed to be zero (B) Combustion reactions are never endothermic in nature (C) Heat of reaction ... to the change in internal energy (D) Clausius-Clapeyron equation is not applicable to melting process

Last Answer : (D) Clausius-Clapeyron equation is not applicable to melting process

Description : What is the resulting pressure when one pound of air at 15 psia and 200 ˚F is heated at constant volume to 800 ˚F?  A.15 psia  B. 28.6 psia  C. 36.4 psia.  D. 52.1 psia Formula : T1/p1 = T2/p2 p2= p1T2 / T1

Last Answer : 28.6 psia

Description : The expression for entropy change given by, ΔS = - nR ln (P2/P1), holds good for (A) Expansion of a real gas (B) Reversible isothermal volume change (C) Heating of an ideal gas (D) Cooling of a real gas

Last Answer : (B) Reversible isothermal volume change

Description : The expression for entropy change given by, ΔS = nR ln (V2/V1) + nCvln (T2/T1) is valid for (A) Reversible isothermal volume change (B) Heating of a substance (C) Cooling of a substance (D) Simultaneous heating and expansion of an ideal gas

Last Answer : (D) Simultaneous heating and expansion of an ideal gas

Description : Pick out the Clausius-Clapeyron equation from the following: (A) dP/dT = ∆H/T∆V (B) ln P = - (∆H/RT) + constant (C) ∆F = ∆H + T [∂(∆F)/∂T]P (D) None of these

Last Answer : B) ln P = - (∆H/RT) + constant

Description : Which of the following is the mathematical representation of the Charles’s law?  A. V1/V2= P2/P1  B. V1/T1=V2/T2  C. V1/T2=V2/T1  D. V1/V2=√P2/√P1

Last Answer : V1/T1=V2/T2

Description : The expression, nRT ln(P1/P2), is for the __________of an ideal gas. (A) Compressibility (B) Work done under adiabatic condition (C) Work done under isothermal condition (D) Co-efficient of thermal expansion

Last Answer : C) Work done under isothermal condition

Description : What is the equation for the work done by a constant temperature system?  A. W = mRTln(V2-V1)  B. W = mR( T2-T1 ) ln( V2/V1)  C. W = mRTln (V2/V1)  D. W = RT ln (V2/V1) Formula : W=∫ pdV lim1,2 ∫ = mRT / V

Last Answer : W = mRTln (V2/V1)

Description : Clapeyron Equation deals with the (A) Rate of change of vapour pressure with temperature (B) Effect of an inert gas on vapour pressure (C) Calculation of ΔF for spontaneous phase change (D) Temperature dependence of heat of phase transition

Last Answer : (A) Rate of change of vapour pressure with temperature

Description : The expression for entropy change, ΔS = n Cp. ln (T2/T1), is valid for the __________ of a substance. (A) Simultaneous pressure & temperature change (B) Heating (C) Cooling (D) Both (B) and (C)

Last Answer : (D) Both (B) and (C)

Description : Clausius-Clapeyron equation is applicable to __________ equilibrium processes. (A) Solid-vapor (B) Solid-liquid (C) Liquid-vapor (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : The heat supplied to the gaS at constant volume is (where m = Mass of gas, cv = Specific heat at constant volume, cp = Specific heat at constant pressure, T2 – T1 = Rise in temperature, and R = Gas constant)  A. mR(T2 – T1)  B. mcv(T2 – T1)  C. mcp(T2 – T1)  D. mcp(T2 + T1)

Last Answer : Answer: B

Description : What horse power is required to isothermally compress 800 ft^3 of Air per minute from 14.7 psia to 120 psia?  A. 28 hp  B.108 hp  C.256 hp  D.13900 hp Formula: W= p1V1 ln (p1/p2) Power = dW / dt

Last Answer : 108 hp

Description : A two stage compressor is used to compress an ideal gas. The gas is cooled to the initial temperature after each stage. The intermediate pressure for the minimum total work requirement should be equal to ... final pressures respectively) (A) Logarithmic (B) Arithmetic (C) Geometric (D) Harmonic

Last Answer : (C) Geometric

Description : Consider a system with twelve magnetic tape drives and three processes P1, P2 and P3. Process P1 requires maximum ten tape drives, process P2 may need as many as four tape drives and P3 may need upto nine ... , system is in: (A) safe state (B) unsafe state (C) deadlocked state (D) starvation state

Last Answer : Answer: B

Description : Which of the following is not an equation of state? (A) Bertholet equation (B) Clausius-Clapeyron equation (C) Beattie-Bridgeman equation (D) None of these

Last Answer : (B) Clausius-Clapeyron equation

Description : Clapeyron equation is a relation between (a) temperature, pressure and enthalpy (b) specific volume and enthalpy (c) temperature and enthalpy (d) temperature, pressure, specific vapour and enthalpy.

Last Answer : Ans: D

Description : Clapeyron equation is applicable for registration at (a) saturation point of vapour (b) saturation point of liquid (c) sublimation temperature (d) triple point.

Last Answer : Ans: a

Description : The expression, nCv(T2- T1), is for the __________ of an ideal gas. (A) Work done under adiabatic condition (B) Co-efficient of thermal expansion (C) Compressibility (D) None of these

Last Answer : (A) Work done under adiabatic condition

Description : Heat transfer by radiation between two bodies at T1 & T2 and in an ambient temperature of Ta °C depends on (A) T1 - T2 (B) T1 - Ta (C) T2 - Ta (D) None of these

Last Answer : (D) None of these

Description : At equilibrium condition, the chemical potential of a material in different phases in contact with each other is equal. The chemical potential for a real gas (μ) is given by (where, μ = standard chemical potential at unit fugacity (f° = 1 atm. ... (B) μ°+ R ln f (C) μ° + T ln f (D) μ° + R/T ln f

Last Answer : (A) μ° + RT ln f

Description : A gas having a volume of100 ft³ at 27ºC is expanded to 120 ft³by heated at constant pressure to what temperature has it been heated to have this new volume?  a. 87°C  b. 85°C  c. 76°C  d. 97°C t2= T2–T1

Last Answer : 87°C

Description : An ideal gas at 45psig and 80ºF is heated in the close container to 130ºF. What is the final pressure?  a. 65.10 psi  b. 65.11 psi  c. 65.23 psi  d. 61.16 psi P1V1/T1= P2V2/T2;V = Constant

Last Answer : 65.23 psi

Description : Ten cu. ft of air at 300psia and 400°F is cooled to 140°F at constant volume. What is the transferred heat?  a.-120Btu  b. -220Btu  c.-320Btu  d. -420Btu formula: Q= mcv(T2-T1)

Last Answer : -420Btu

Description : Write parametric equation of line having end points P1(3,5,8) and P2 (6,4,3). a.[3 5 8]+u[3 -1 -5] b.[3 5 8]+u[3 1 5] c.[3 8 5]+u[3 -1 -5] d.[3 5 8]+u[-3 1 5]

Last Answer : a.[3 5 8]+u[3 -1 -5]

Description : Assuming compression is according to the Law PV = C, Calculate the initial volume of the gas at a pressure of 2 bars w/c will occupy a volume of 6m³ when it is compressed to a pressure of 42 Bars.  a) 130m³  b) 136m³  c) 120m³  d) 126m³ Formula: P1V1/T1 =P2V2/T2

Last Answer : 126m³

Description : The volume of the gas held at constant pressure increases 4 cm² at 0°C to 5cm². What is the final pressure?  a. 68.65ºC  b. 68.25ºC  c. 70.01°C  d. 79.1ºC t2= T2–T1

Last Answer : 981 N

Description : A perfect gas has a value of R= 319.2 J/ kf.K and k= 1.26. If 120 kJ are added to 2.27 kf\g of this gas at constant pressure when the initial temp is 32.2°C? Find T2.  a. 339.4 K  b. 449.4 K  c. 559.4K  d. 669.4K formula: cp = kR/ k-1 Q= mcp(T2-T1)

Last Answer : 339.4 K

Description : A certain gas with cp = 0.529Btu/lb°R and R = 96.2ft/lbºR expands from 5 ft and 80ºF to 15 ft while the pressure remains constant at 15.5 psia.  a. T2=1.620ºR, ∫H = 122.83 Btu  b. T2 = 2°R, ∫H = 122.83 Btu  c. ... , ∫H = 122.83 Btu  d. T2 = 1°R, ∫H = 122.83 Btu T2= V2(t2)/V1 and ∫H = mcp (T2-T1)

Last Answer : T2=1.620ºR, ∫H = 122.83 Btu

Description : Q No: 251 In a sludge digestion tank if the moisture content of sludge V1 litres is reduced from p1 % to p2 % the volume V2 is A. [(100 + P1)/(100 – P2)] V1 B. [(100 – P1)/(100 + P2)] V1 C. [(100 – P1)/(100 – P2)] V1 D. [(100 + P2)/(100 – P1)] V1

Last Answer : ANS: C

Description : Suppose there are four processes in execution with 12 instances of a Resource R in a system. The maximum need of each process and current allocation are given below: With reference to current allocation, is system safe? If so, ... B) Yes, P1 P2 P3 P4 (C) Yes, P4 P3 P1 P2 (D) Yes, P2 P1 P3 P4

Last Answer : (C) Yes, P4 P3 P1 P2

Description : What is the value of maximum COP in case of absorption refrigeration, if refrigeration provided is at temperature, TR (where, T1 and T2 are source & surrounding temperatures respectively.)? (A) TR/(T2 - TR) (T1 - T2 )/T1 (B) TR ... T1 /(T1 - T2 ) (C) TR/(T1 - TR) (T1 - T2 )/T1 (D) None of these

Last Answer : (A) TR/(T2 - TR) × (T1 - T2 )/T1

Description : The most efficient heat engine that can operate between two temperature reservoirs T1 and T2 is: w) jet engine x) internal combustion engine y) Carnot engine (pron: car-no) z) steam engine

Last Answer : ANSWER: Y -- CARNOT ENGINE

Description : Ten cu ft. of air at 300 psia 400°F is cooled to 140°F at constant volume. What is the final pressure? (formula: p2 = p1T2/T1)  a. 0  b. 209 psia  c. - 420 psia  d. None of the above

Last Answer : 209 psia

Description : The ratio of equilibrium constants (Kp2/Kp1) at two different temperatures is given by (A) (R/∆H) (1/T1- 1/T2) (B) (∆H/R) (1/T1- 1/T2) (C) (∆H/R) (1/T2- 1/T1) (D) (1/R) (1/T1- 1/T2)

Last Answer : (B) (∆H/R) (1/T1- 1/T2)

Description : The equilibrium constant for a chemical reaction at two different temperatures is given by (A) Kp2/Kp1 = - (∆H/R) (1/T2- 1/T1) (B) Kp2/Kp1 = (∆H/R) (1/T2- 1/T1) (C) Kp2/Kp1 = ∆H (1/T2- 1/T1) (D) Kp2/Kp1 = - (1/R) (1/T2- 1/T1)

Last Answer : (A) Kp2/Kp1 = - (∆H/R) (1/T2- 1/T1)

Description : The efficiency of a Carnot heat engine operating between absolute temperatures T1 and T2 (when, T1 > T2) is given by (T1- T2)/T1. The co efficient of performance (C.O.P.) of a Carnot heat pump operating between T1 and T2is given by (A) T1/(T1-T2) (B) T2/(T1-T2) (C) T1/T2 (D) T2/R1

Last Answer : (A) T1/(T1-T2)

Description : The efficiency of a Carnot heat engine operating between absolute temperatures T1 and T2(when, T1 > T2) is given by (T1- T2)/T1. The co efficient of performance (CO.P.) of a Carnot heat pump operating between T1 and T2is given by (A) T1/(T1-T2) (B) T2/(T1-T2) (C) T1/T2 (D) T2/T1

Last Answer : (B) T2/(T1-T2)

Description : Let R be a relation defined on the set A of all triangles such that R = {(T1, T2) : T1 is similar to T2}. Then R is -Maths 9th

Last Answer : (d) An equivalence relation.Every triangle is similar to itself, so (T1, T1) ∈ R ⇒ R is reflexive. (T1, T2) ∈ R ⇒ T1 ~ T2 ⇒T2 ~ T1, ⇒ (T2, T1) ∈ R ⇒ R is symmetrictransitive. ∴ R is an equivalence relation.

Description : Consider the following Entity-Relationship (E-R) diagram and three possible relationship sets (I, II and III) for this E-R diagram: If different symbols stand for different values (e.g., t1 is definitely not equal to t2 ... diagram ? (A) I only (B) I and II only (C) II only (D) I, II and III

Last Answer : (A) I only

Description : Pick out the wrong statement. (A) The condensing film co-efficient is about 3 times lower for vertical condenser as compared to the equivalent horizontal condenser for identical situation ( ... in a heat exchanger is controlled by the value of the film co-efficient, which is higher

Last Answer : (D) Overall heat transfer co-efficient in a heat exchanger is controlled by the value of the film co-efficient, which is higher

Description : For heat engine operating between two temperatures (T1>T2), what is the maximum efficiency attainable?  A. Eff = 1 – (T2/T1)  B. Eff = 1 - (T1/T2)  C. Eff = T1 - T2  D. Eff = 1 - (T2/T1)^2

Last Answer : Eff = 1 – (T2/T1)

Description : For an ideal gas, the chemical potential is given by (A) RT d ln P (B) R d ln P (C) R d ln f (D) None of these

Last Answer : (A) RT d ln P