Which type of vibrations are also known as transient vibrations?
a. Undamped
b. Damped
c. Torsional
d. Transverse vibrations

1 Answer

Answer :

b. Damped

Related questions

Description : Which type of vibrations are also known as transient vibrations? A) Undamped vibrations B) Damped vibrations C) Torsional vibrations D) Transverse vibrations

Last Answer : B) Damped vibrations

Description : The vibrations of the body with no resistance to its motion known as A. Damped Vibrations B. Undamped Vibrations C. Both D. None

Last Answer : B. Undamped Vibrations

Description : In which type of vibrations, amplitude of vibration goes on decreasing every cycle? A) Damped vibrations B) Undamped vibrations C) Both a. and b. D) None of the above

Last Answer : A) Damped vibrations

Description : In which type of vibrations, amplitude of vibration goes on decreasing every cycle? a. Damped vibrations b. Undamped vibrations c. Both a. and b. d. None of the above

Last Answer : a. Damped vibrations

Description : In coulomb damping the frequency of damped vibrations is A Equal to that of undamped vibrations B Less than that of undamped vibrationsC More than that of undamped vibrations D Independent of the frequency of undamped vibration

Last Answer : A Equal to that of undamped vibrations

Description : In case of viscous damping the frequency of damped vibration is A) Equal to that of undamped vibrations B) Less than that of undamped vibrations C) Greater than that of undamped vibrations D) Independent than that of undamped vibrations

Last Answer : B) Less than that of undamped vibrations

Description : When the particles of the shaft or disc move in a circle about the axis of the shaft, then the vibrations are known as ___________ . A Longitudinal vibrations B Transverse vibrations C Torsional vibrations D None of these

Last Answer : C Torsional vibrations

Description : The vibrations perpendicular to the shaft axis are known as A Transverse B Longitudinal C Torsional D None of the mentioned

Last Answer : A Transverse

Description : When the particles of the shaft or disc move in a circle about the axis of the shaft, then the vibrations are known as ___________ . A. longitudinal vibrations B. transverse vibrations C. torsional vibrations D. none of these

Last Answer : C. torsional vibrations

Description : Which of the following is a type of free vibration? A Longitudinal vibrations B Transverse vibrations C Torsional vibrations D A, B and C

Last Answer : D A, B and C

Description : Which of the following is a type of free vibration? A. Longitudinal vibrations B. Transverse vibrations C. Torsional vibrations D. A, B and C

Last Answer : D. A, B and C

Description : During transverse vibrations, shaft is subjected to which type of stresses? A) Tensile stresses B) Torsional shear stress C) Bending stresses D) All of the above

Last Answer : C) Bending stresses

Description : Which of the following is a type of free vibration? ( A ) Longitudinal vibrations ( C ) Torsional vibrations D ( B ) Transverse vibrations ( D ) A, B and C

Last Answer : ( D ) A, B and C

Description : During transverse vibrations, shaft is subjected to which type of stresses? a. Tensile stresses b. Torsional shear stress c. Bending stresses d. All of the above

Last Answer : c. Bending stresses

Description : The critical speed of a shaft with a disc supported in between is equal to the natural frequency of the system in A Transverse vibrations B Torsional vibrations C Longitudinal vibrations D None of the mentioned

Last Answer : A Transverse vibrations

Description : Centrifugal absorber is used to reduce A) Centrifugal force in rotating system B) Torsional vibration of rotating system C) Vibration in linear system D) Transverse vibrations

Last Answer : B) Torsional vibration of rotating system

Description : The critical speed of a shaft with a disc supported in between is equal to the natural frequency of the system in a) transverse vibrations b) torsional vibrations c) longitudinal vibrations d) none of the mentioned

Last Answer : a) transverse vibrations

Description : Which of the following vibrations are classified according to magnitude of actuating force? a. Torsional vibrations b. Deterministic vibrationsc. Transverse d. All of the above

Last Answer : b. Deterministic

Description : The critical speed of a shaft with a disc supported in between is equal to the natural frequency of the system in a) transverse vibrations b) torsional vibrations c) longitudinal vibrations d) none of the mentioned

Last Answer : a) transverse vibrations

Description : For an under damped harmonic oscillator, resonance A Occurs when excitation frequency is greater than undamped natural frequency B Occurs when excitation frequency is less than undamped natural frequency C Occurs when excitation frequency is equal to undamped natural frequency D Never occurs

Last Answer : C Occurs when excitation frequency is equal to undamped natural frequency

Description : Calculate damped natural frequency, if a spring mass damper system is subjected to periodic disturbing force of 30 N. Damping coefficient is equal to 0.76 times of critical damping coefficient and undamped natural frequency is 5 rad/sec A. 3.99 rad/sec B. 2.13 rad/sec C. 4.12 rad/sec D. 3.24 rad/sec

Last Answer : D. 3.24 rad/sec

Description : For an under damped harmonic oscillator, resonance a) occurs when excitation frequency is greater than undamped natural frequency b) occurs when excitation frequency is less than undamped natural frequency c) occurs when excitation frequency is equal to undamped natural frequency d) never occurs

Last Answer : c) occurs when excitation frequency is equal to undamped natural frequency

Description : For an under damped harmonic oscillator, resonance a) occurs when excitation frequency is greater than undamped natural frequency b) occurs when excitation frequency is less than undamped natural frequency c) occurs when excitation frequency is equal to undamped natural frequency d) never occurs

Last Answer : c) occurs when excitation frequency is equal to undamped natural frequency

Description : When no external force is acting on the vibrating body, the vibrations are said to be A. Free Vibrations B. Forced Vibrations C. Loaded Vibrations D. Undamped Vibrations

Last Answer : A. Free Vibrations

Description : When the external force is acting on the vibrating body, the vibrations are said to be A. Natural Vibrations B. Forced Vibrations C. Loaded Vibrations D. Undamped Vibrations

Last Answer : B. Forced Vibrations

Description : What is meant by critical damping coefficient? * 1 point (A) Frequency of damped free vibrations is less than zero (B). The motion is a periodic in nature (C). Both a. and b. (D). None of the above

Last Answer : (C). Both a. and b.

Description : In damped vibrations, the amplitude of the resulting vibration gradually reduces. This is due to the reason that an amount of energy is always dissipated to overcome the ________ * 1 point (A) Frictional resistance (B) Work done(C) Fluid pressure (D) Air pressure

Last Answer : (A) Frictional resistance

Description : When the body vibrates under the influence of external force, then the body is said to be under ___________ . * 1 point (A) free vibrations (B) natural vibrations (C) forced vibrations (D) damped vibrations

Last Answer : (C) forced vibrations

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... Φ) C x = (A - Bt) e - ωt D x = X e - ξωt (cos ω d t + Φ)

Last Answer : A x = (A + Bt) e – ωt

Description : What is meant by critical damping coefficient? A Frequency of damped free vibrations is less than zero B The motion is aperiodic in nature C Both a. and b. D None of the above

Last Answer : B The motion is aperiodic in nature

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... ) C. x = (A - Bt) e - ωt D. x = X e - ξωt (cos ω d t + Φ

Last Answer : A. x = (A + Bt) e – ωt

Description : In damped free vibrations, which parameters indicate vibrations? A) Natural frequency B) Rate of decay of amplitude C) Both a. and b. D) None of the above

Last Answer : C) Both a. and b.

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the A differential equation for damped free vibrations having single degree of freedom. What will be the solution to this differential equation if the system is ... (C)x = (A - Bt) e - ωt ( D )x = X e - ξωt (cos ω d t + Φ

Last Answer : ( A ) x = (A + Bt) e – ωt

Description : What is meant by critical damping coefficient? B ( A )Frequency of damped free vibrations is less than zero ( B )The motion is aperiodic in nature ( C )Both a. and b. (D)None of the above

Last Answer : ( B )The motion is aperiodic in nature

Description : What is meant by critical damping coefficient? a. Frequency of damped free vibrations is less than zero b. The motion is aperiodic in nature c. Both a. and b. d. None of the above

Last Answer : b. The motion is aperiodic in nature

Description : According to D' Alembert's principle, m (d 2 x/ dt 2 ) + c (dx/dt) + Kx =0 is the differential equati damped free vibrations having single degree of freedom. What will be the solution to this differ equation if the system is critically ... c. x = (A - Bt) e - ωt d. x = X e - ξωt (cos ω d t + Φ)

Last Answer : a. x = (A + Bt) e – ωt

Description : In damped free vibrations, which parameters indicate vibrations? a. Natural frequency b. Rate of decay of amplitude c. Both a. and b. d. None of the above

Last Answer : c. Both a. and b.

Description : If the damping factor for a vibrating system is unity, then the system will be (A) overdamped (B) underdamped (C) critically damped (D) without vibrations

Last Answer : (C) critically damped

Description : In damped vibrations, the amplitude of the resulting vibration gradually reduces. This is due to the reason that an amount of energy is always dissipated to overcome the ________ a) Frictional resistance b) Work done c) Fluid pressure d) Air pressure

Last Answer : a) Frictional resistance

Description : In damped vibrations, the amplitude of the resulting vibration gradually diminishes. a) True b) False

Last Answer : a) True

Description : Which of the following statements is/are true? A. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction B. Shaft vibrates with maximum frequency when rotors ... C. Zero node behavior is observed in rotors rotating in opposite direction D. All of the above

Last Answer : A. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction

Description : If the polar moment of inertia is increased to four times, then what will be the effect on free torsional vibrations of a single motor system? A. Increases 4 times B. Increases 2 times C. Decreases 4 times D. Decreases 2 times

Last Answer : B. Increases 2 times

Description : Which of the following statements is/are true? A) Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction B) Shaft vibrates with maximum frequency when rotors ... C) Zero node behavior is observed in rotors rotating in opposite direction D) All of the above

Last Answer : A) Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction

Description : Which of the following statements is/are true? a. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction b. Shaft vibrates with maximum frequency when rotors ... c. Zero node behavior is observed in rotors rotating in opposite direction d. All of the above

Last Answer : a. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction

Description : _______ torsional vibrations will occur in a two-rotor system only if both rotors have the same frequency. (A) Free (B) Forced (C) Unbalanced (D) None of the above

Last Answer : (A) Free

Description : f the length inertia is decreased to nine times, then what will be the effect on free torsional vibrations of a single motor system? a) Increases 3 times b) Increases 9 times c) Decreases 9 times d) Decreases 3 times

Last Answer : a) Increases 3 times

Description : Calculate the free torsional vibrations of a single motor system from the following data: C = 8 GN/m 2 , L=9m, I = 600 Kg-m 2 , J = 8×10 4 m 4 a) 162,132 b) 172,132 c) 182,132 d) 192,132

Last Answer : b) 172,132

Description : If the mass moment of inertia is increased to four times, then what will be the effect on free torsional vibrations of a single motor system? a) Increases 4 times b) Increases 2 times c) Decreases 4 times d) Decreases 2 times

Last Answer : d) Decreases 2 times

Description : If the polar moment of inertia is increased to four times, then what will be the effect on free torsional vibrations of a single motor system? a) Increases 4 times b) Increases 2 times c) Decreases 4 times d) Decreases 2 times

Last Answer : b) Increases 2 times