Fluoroacetate inhibits the reaction of citric acid cycle: (A) Isocitrate α-Ketoglutarate (B) Fumarate α-Malate (C) Citrate α-cis-aconitate (D) Succinate α-fumarate

1 Answer

Answer :

Answer :  C

Related questions

Description : The example of generation of a high energy phosphate at the substrate level in the citric acid cycle is the reaction: (A) Isocitrate α-Ketoglutarate (B) Succinate α-fumarate (C) Malate α-oxaloacetate (D) Succinyl CoA α-Succinate

Last Answer : Answer : D

Description : The reaction of Kreb’s cycle which does not require cofactor of vitamin B group is (A) Citrate isocitrate (B) α -Ketoglutarate succinate (C) Malate oxaloacetate (D) Succinate fumarate

Last Answer : Answer : A

Description : An enzyme of the citric acid cycle also found outside the mitochondria is (A) Isocitrate dehydrogenase (B) Citrate synthetase (C) α-Ketoglutarate dehydrogenase (D) Malate dehydrogenase

Last Answer : Answer : C

Description : A compound serving a link between citric acid cycle and urea cycle is (A) Malate (B) Citrate (C) Succinate (D) Fumarate

Last Answer : Answer : D

Description : All of the following intermediates of citric acid cycle can be formed from amino acids except (A) α-Ketoglutarate (B) Fumarate (C) Malate (D) Oxaloacetate

Last Answer : Answer : C

Description : The initial step of the citric acid cycle is (A) Conversion of pyruvate to acetyl-CoA (B) Condensation of acetyl-CoA with oxaloacetate (C) Conversion of citrate to isocitrate (D) Formation of α -ketoglutarate catalysed by isocitrate dehydrogenase

Last Answer : Answer : B

Description : Malonate is an inhibitor of (A) Malate dehydrogenase (B) α-Ketoglutarate dehydrogenase (C) Succinate dehydrogenase (D) Isocitrate dehydrogenase

Last Answer : Answer : C

Description : The substance which may be considered to play a catalytic role in citric acid cycle is (A) Oxaloacetate (B) Isocitrate (C) Malate (D) Fumarate

Last Answer : Answer : A

Description : The carrier of the citric acid cycle is (A) Succinate (B) Fumarate (C) Malate (D) Oxaloacetate

Last Answer : D

Description : Among citric acid cycle enzymes, a flavoprotein is (A) Malate (B) Fumarase (C) Succinate dehrogenase (D) Isocitrate dehrogenase

Last Answer : Answer : C

Description : The integrator between the TCA cycle and urea cycle is (A) Fumarate (B) Malate (C) Pyruvate (D) Citrate

Last Answer : Answer : A

Description : Substrate level phosphorylation in TCA cycle is in step: (A) Isocitrate dehydrogenase (B) Malate dehydrogenase (C) Aconitase (D) Succinate thiokinase

Last Answer : D

Description : A carrier molecule in the citric acid cycle is (A) Acetyl-CoA (B) Citrate (C) Oxaloacetate (D) Malate

Last Answer : Answer : C

Description : The reaction catalysed by α-ketoglutarate dehydrogenase in the citric acid cycle requires (A) NAD (B) NADP (C) ADP (D) ATP

Last Answer : Answer : A

Description : All enzymes of TCA cycle are located in the mitochondrial matrix except one which is located in inner mitochondrial membranes in eukaryotes and in cytosol in prokaryotes. This enzyme is (a) isocitrate dehydrogenase (b) malate dehydrogenase (c) succinate dehydrogenase (d) lactate dehydrogenase.

Last Answer : (c) succinate dehydrogenase

Description : Before pyruvic acid enters the TCA cycle it must be converted to (A) Acetyl CoA (B) Lactate (C) α-ketoglutarate (D) Citrate

Last Answer : A

Description : For extramitochondrial fatty acid synthesis, acetyl CoA may be obtained from (A) Citrate (B) Isocitrate (C) Oxaloacetate (D) Succinate

Last Answer : Answer : A

Description : Formation of succinyl-CoA from α-Ketoglutarate is inhibited by (A) Fluoroacetate (B) Arsenite (C) Fluoride (D) Iodoacetate

Last Answer : Answer : B

Description : In TCA cycle, oxalosuccinate is converted to α-ketoglutarate by the enzyme: (A) Fumarase (B) Isocitrate dehydrogenase (C) Aconitase (D) Succinase

Last Answer : Answer : B

Description : The metabolism of protein is integrated with that of carbohydrate and fat through (A) Oxaloacetate (B) Citrate (C) Isocitrate (D) Malate

Last Answer : Answer : A

Description : In gluconeogensis, an allosteric activator required in the synthesis of oxaloacetate from bicarbonate and pyruvate, which is catalysed by the enzyme pyruvate carboxylase is (A) Acetyl CoA (B) Succinate (C) Isocitrate (D) Citrate

Last Answer : Answer : A

Description : All of the following are allosteric enzymes except (A) Citrate synthetase (B) a-Ketoglutarate dehdrogenase (C) Succinate thiokinase (D) Succinate dehydrogenase

Last Answer : Answer : C

Description : Isocitrate dehydrogenase is allosterically inhibited by (A) Oxalosuccinate (B) α-Ketoglutarate (C) ATP (D) NADH

Last Answer : Answer : C

Description : Out of 24 mols of ATP formed in TCA cycle, 2 molecules of ATP can be formed at “substrate level” by which of the following reaction ? (A) Citric acid→ Isocitric acid (B) Isocitrate→ Oxaloacetate (C) Succinic acid→ Fumarate (D) Succinylcat→ Succinic acid

Last Answer : D

Description : All of the following are intermediates of citric acid cycle except (A) Oxalosuccinate (B) Oxaloacetate (C) Pyruvate (D) Fumarate

Last Answer : Answer : C

Description : A competitive inhibitor of succinic dehydrogenase is (a) α-ketoglutarate (b) malate (c) malonate (d) oxaloacetate.

Last Answer : (c) malonate

Description : An allosteric enzyme responsible for controlling the rate of T.C.A cycle is (A) Malate dehydrogenase (B) Isocitrate dehydrogenase (C) Fumarase (D) Aconitase

Last Answer : B

Description : The enzyme -ketoglutarate dehydrogenase in the citric acid cycle requires (A) Lipoate (B) Folate (C) Pyridoxine (D) Inositol

Last Answer : Answer : A

Description : The rate of citric acid cycle is controlled by the allosteric enzyme: (A) Aconitase (B) Fumarase (C) Fumarase (D) Malate dehydrogenase

Last Answer : Answer : C

Description : In citric acid cycle, GDP is phosphorylated by (A) Succinate dehydrogenase (B) Aconitase (C) Succinate thiokinase (D) Fumarse

Last Answer : Answer : C

Description : NADPH required for fatty acid synthesis can come from (A) Hexose monophosphate shunt (B) Oxidative decarboxylation of malate (C) Extramitochondrial oxidation of isocitrate (D) All of these

Last Answer : Answer : D

Description : Mitochondrial membrane is freely preamble to (A) Pyruvate (B) Malate (C) Oxaloacetate (D) Fumarate

Last Answer : Answer : B

Description : An aneplerotic reaction which sustains the availability of oxaloacetate is the carboxylation of (A) Glutamate (B) Pyruvate (C) Citrate (D) Succinate

Last Answer : B

Description : Active transport of sugar is depressed by the agent: (A) Oxaloacetate (B) Fumarate (C) Malonate (D) Succinate

Last Answer : C

Description : Calcium is required for the activation of the enzyme: (A) Isocitrate dehydrogenase (B) Fumarase (C) Succinate thiokinase (D) ATPase

Last Answer : Answer : D

Description : Thiamine is essential for (A) Pyruvate dehydrogenase (B) Isocitrate dehydrogenase (C) Succinate dehydrogenase (D) Acetyl CoA synthetase ENZYMES 165

Last Answer : Answer : B

Description : With the exception of glycine all amino acids found in protein are (A) Isocitrate dehydrogenase (B) Fumarase (C) Succinate thiokinase (D) ATPase

Last Answer : Answer : B

Description : In Krebs’ cycle, the FAD precipitates as electron acceptor during the conversion of (a) fumaric acid to malic acid (b) succinic acid to fumaric acid (c) succinyl CoA to succinic acid (d) α-ketoglutarate to succinyl CoA.

Last Answer : (b) succinic acid to fumaric acid

Description : Which of the following is not having an apoenzyme and coenzyme? (A) Lactate dehydrogenase (B) Succinate dehydrogenase (C) Malate dehydrogenase (D) Pepsin

Last Answer : Answer : D

Description : An enzyme catalyzing oxidoreduction, using oxygen as hydrogen acceptor is (A) Cytochrome oxidase (B) Lactate dehydrogenase (C) Malate dehydrogenase (D) Succinate dehydrogenase

Last Answer : Answer : A

Description : NAD is required as a coenzyme for (A) Malate dehydrogenase (B) Succinate dehydrogenase (C) Glucose-6-phosphate dehydrogenase (D) HMG CoA reductae

Last Answer : Answer : A

Description : NADPH is produced when this enzyme acts (A) Pyruvate dehydrogenase (B) Malic enzyme (C) Succinate dehydrogenase (D) Malate dehydrogenase

Last Answer : Answer : B

Description : While citrate is converted to isocitrate in the mitochondria, it is converted to _______ in the cytosol. (A) Acetyl CoA + oxaloacetate (B) Acetyl CoA + malonyl CoA (C) Acetyl CoA + Pyruvate (D) Acetyl CoA + acetoacetyl CoA

Last Answer : Answer : A

Description : Citrate is converted to isocitrate by aconitase which contains (A) Ca++ (B) Fe++ (C) Zn++ (D) Mg++

Last Answer : B

Description : Select the oral iron preparation which does not impart metallic taste and has good oral tolerability despite high iron content but whose efficacy in treating iron deficiency anaemia has been questioned: A. Iron hydroxy polymaltose B. Ferrous succinate C. Ferrous fumarate D. Ferrous gluconate

Last Answer : A. Iron hydroxy polymaltose

Description : A specific inhibitor for succinate dehydrogenase is (A) Arsenite (B) Malonate (C) Citrate (D) Fluoride

Last Answer : Answer : B

Description : A specific inhibitor for succinate dehydrogenase is (A) Arsenine (B) Arsenite (C) Citrate (D) Fluoride ENZYMES 147

Last Answer : Answer : B

Description : A specific inhibitor for succinate dehydrogenase is (A) Arsinite (B) Melouate (C) Citrate (D) Cyanide

Last Answer : B

Description : Lipoic acid is a conenzyme for (A) Pyruvate dehydrogenase (B) α-Ketoglutarate dehydrogenae (C) Both (A) and (B) (D) None of these

Last Answer : Answer : C

Description : Pyruvate dehydrogenase complex and α-ketoglutarate dehydrogenase complex require the following for their oxidative decarboxylation: (A) COASH and Lipoic acid (B) NAD+ and FAD (C) COASH and TPP (D) COASH, TPP,NAD+,FAD, Lipoate

Last Answer : D