A coil =of inductance `L=50muH` and resistance =`0.5Omega` is connected to a battery of emf=5A. A resistance of `10Omega` is connected parallel to the

1 Answer

Answer :

A coil =of inductance `L=50muH` and resistance =`0.5Omega` is connected to a battery of emf=5A. A resistance ... is (0.02)x in mJ. Find valuie of x.

Related questions

Description : A 20 V battery of internal resistance `1 Omega` is connected to three coils of `12 Omega, 6 Omega` and `4 Omega` in parallel, a resistor of `5Omega` a

Last Answer : A 20 V battery of internal resistance `1 Omega` is connected to three coils of `12 ... and the terminal potential difference across each battery.

Description : The emf of a cell E is 15 V as shown in the figure with an internal resistance of `0.5Omega`. Then the value of the current drawn from the cell is

Last Answer : The emf of a cell E is 15 V as shown in the figure with an internal resistance of `0.5Omega`. Then the value of ... A. `3A` B. `2A` C. `5A` D. `1A`

Description : AB is a potentiometer wire of length 100 cm and its resistance is `10Omega`. It is connected in series with a resistance R = 40 `Omega` and a battery

Last Answer : AB is a potentiometer wire of length 100 cm and its resistance is `10Omega`. It is connected in series with a ... `1.6V` C. `0.08V` D. `0.16V`

Description : A cell which has an emf `1.5` V is connectedin series with an external resistance of `10Omega`. If the potential difference across the cell is `1.25`

Last Answer : A cell which has an emf `1.5` V is connectedin series with an external resistance of `10Omega`. If the potential ... `0.25` C. `1.5` D. `0.3`

Description : A coil of inductance 240 mH and resistance 75 Ohm is connected in parallel with a capacitor across a 30 V, variable frequency supply. The current drawn by the circuit is found to be minimum when the supply frequency is 1 kHz. The ... (A) 40, 400 Hz (B) 10, 100 Hz (C) 20, 50 Hz (D) 50, 20 Hz

Last Answer : A coil of inductance 240 mH and resistance 75 Ohm is connected in parallel with a capacitor across a 30 V, variable frequency supply. The current drawn by the circuit is found to be minimum ... supply frequency is 1 kHz. The approximate values of Q-factor and bandwidth are, respectively 20, 50 Hz

Description : A coil of 500 turns is linked with a flux of 25 mwb, when carries a current of 12.5A. Calculate the value of self-inductance.

Last Answer : Ans: Self-Inductance: L = NΦ /I = 500 × 25 × 10-3 / 12.5 = 1 H

Description : Magnetic flux in a circular coil of resistance `10Omega` changes with time as shown in figure. `otimes` direction indicates a direction perpendicular

Last Answer : Magnetic flux in a circular coil of resistance `10Omega` changes with time as shown in figure ... to paper inwards. Match the following table.

Description : The inductance is the measure of a) Electric charges stored by the material b) Emf generated by energising the coil c) Magnetic field stored by the material d) Magnetization of dipoles

Last Answer : c) Magnetic field stored by the material

Description : The phenomenon of producing emf in the coil due to change of current in the coil itself is called: a. mutual induction b. self-induction c. self-inductance d. mutual inductance

Last Answer : d. mutual inductance

Description : A battery of emf 2 V and internal resistance `0.5 Omega` is connected across a resistance of `9.5 Omega`. How many electrons pass through a cross-sect

Last Answer : A battery of emf 2 V and internal resistance `0.5 Omega` is connected across a resistance of `9. ... a cross-section of the resistance in 1 second ?

Description : The potential differnce between the terminals of a battery of emf 6.0 V and internal resistance `1 Omega` drops to 5.8 V when connected across an exte

Last Answer : The potential differnce between the terminals of a battery of emf 6.0 V and internal resistance ... resistor . Find the resistance of the external res

Description : The circuit shows a resistance, `R=0.01Omega` and inductance L=3mH connected toa conducting rod PQ of length l=wm which can slide on a perfectly condu

Last Answer : The circuit shows a resistance, `R=0.01Omega` and inductance L=3mH connected toa conducting rod PQ of length l= ... (inN-m) at t=(0.3In 2) second.

Description : The circuit shows a resistance, `R=0.01Omega` and inductance L=3mH connected to a conducting rod PQ of length l=wm which can slide on a perfectly cond

Last Answer : The circuit shows a resistance, `R=0.01Omega` and inductance L=3mH connected to a conducting rod PQ of length ... (inN-m) at t=(0.3In 2) second.

Description : Two resistors of resistances `2Omega` and `6Omega` are connected in parallel. This combination is then connected to a battery of emf 2 V and internal

Last Answer : Two resistors of resistances `2Omega` and `6Omega` are connected in parallel. This combination is then connected to a ... . `(4)/(17)A` D. `1 A`

Description : A battery of emf E has an internal resistance r. A variable resistacne R is connected to the terminals of the battery. A current `i` is drawn from the

Last Answer : A battery of emf E has an internal resistance r. A variable resistacne R is connected to the terminals of ... infinity, `(E)/(r)`, V approaches E

Description : Three identical cells each of emf 2 V and unknown internal resistance are connected in parallel. This combination is connected to a `5 Omega` resistor

Last Answer : Three identical cells each of emf 2 V and unknown internal resistance are connected in parallel. ... what is the internal resistance of each cell ?

Description : When two batteries are connected in parallel, it should be ensured that A. They have same emf B. They have same make C. They have same ampere hour capacity D. They have identical internal resistance

Last Answer : A. They have same emf

Description : Two electric bulbs rated 50 W and 100 W are glowing at full powr, when used in parallel with a battery of emf 120 V and internal resistance 10 `Omega`

Last Answer : Two electric bulbs rated 50 W and 100 W are glowing at full powr, when used in parallel with a battery of emf 120 V ... power, is A. 6 B. 4 C. 2 D. 8

Description : Six resistance are connected as shown in figure. If total current flowing is `0.5A`, then the potrential difference `V_(A)-V_(B)` is

Last Answer : Six resistance are connected as shown in figure. If total current flowing is `0.5A`, then the potrential difference `V_(A) ... V B. 6 V C. 2 V D. 4 V

Description : You are given two resistances `R_(1)` and `R_(2)`. By using them singly, in series and in parallel, you can obtain four resistances of `1.5Omega, 2Ome

Last Answer : You are given two resistances `R_(1)` and `R_(2)`. By using them singly, in series and in parallel ... .5Omega` C. `3Omega,5Omega` D. `2Omega, 6Omega`

Description : A transmitted signal 5 meters in wavelength is received by an antenna coil having a 50-Ω resistance and a 0.01 H inductance. What is the capacitance of the tuner shunting the antenna coil at this point? A. 0.704 fF B. 0.704 μF C. 0.704 nF D. 0.704 mF

Last Answer : A. 0.704 fF

Description : In the circuit shown the cell is ideal. The codil has an inductance of 2H and will blow when the current through it reaches 5a. The switch is closed a

Last Answer : In the circuit shown the cell is ideal. The codil has an inductance of 2H and will blow when the ... Find the time (in second)n when fuse will blow.

Description : In the plane of AC generator coil is parallel to the field, then emf induced in coil is: a. maximum b. minimum c. zero d. intermediate

Last Answer : b. minimum

Description : A coil is wound with 400 feet of No. 16 tinned copper wire and connected to a 12 volt battery. What is the current if the resistance per 1000 feet of No. 16 tinned copper wire is 4.26 ohms? A. 4.8 amps B. 7.06 amps C. 10.65 amps D. 11.27 amps

Last Answer : Answer: B

Description : A coil is wound with 200 feet of No. 16 tinned copper wire and connected to a 12 volt battery. What is the current if the resistance per 1000 feet of No. 16 tinned copper wire is 4.26 ohms? A. 1.14 amps B. 7.04 amps C. 10.22 amps D. 14.08 amps

Last Answer : Answer: D

Description : In the given circuit, the resistances are given in ohm. The current through the `10Omega` resistance is 3 A while that through the resistance X is 1 A

Last Answer : In the given circuit, the resistances are given in ohm. The current through the `10Omega` resistance is 3 A while ... and 6 C. 6 and 12 D. 6 and 6

Description : Why in an ammeter low resistance is connected in parallel with the coil?

Last Answer : Feel Free to Answer

Description : When a resistor is used as a shunt and is connected in parallel with a meter movement coil, it will provide _____________. A. a measurement of circuit resistance B. an increased accuracy of approximately 1.5 percent C. an extended meter range D. none of the above

Last Answer : Answer: C

Description : A circular coil of `20turns` and radius `10cm` carries a current of `5A`. It is placed in a uniform magnetic field of `0*10T`. Find the torque acting

Last Answer : A circular coil of `20turns` and radius `10cm` carries a current of `5A`. It is placed in a uniform magnetic ... Nm B. 3.14 Nm C. 0.314 Nm D. zero

Description : The basic meter movement responds to the flow of current through its coil. Therefore, this meter movement may be used as a/an _____________. A. voltmeter by placing a resistance in parallel with the ... in parallel with the coil D. ammeter by placing a low resistance in parallel with the coil

Last Answer : Answer: D

Description : Two cells of emf of 1.5 V and 2.0 V having internal resistances of `1 Omega` and `2 Omega`, respectively are connected in parallel so as to send curre

Last Answer : Two cells of emf of 1.5 V and 2.0 V having internal resistances of `1 Omega` and `2 Omega` ... of `5 Omega`. Find the current in the external circuit.

Description : The induced emf in a coil depends upon: a. Strength of magnetic field b. Resistance of the coil c. area of the coil d. All of them

Last Answer : d. All of them

Description : The current flowing in a coil due to induced emf depends upon: a. shape of coil b. resistance of coil c. area of coil d. magnetic flux

Last Answer : a. shape of coil

Description : Three factors responsible for the change in voltage as load is applied to an AC generator are: 1) the drop in resistance in the armature circuit, 2) the change in flux, and 3) the ____________. A. armature winding speed B. inductance load drop C. coil pitch factor D. armature reactance voltage drop

Last Answer : Answer: D

Description : An open coil in a transformer will be indicated by which of the listed conditions? A. 'zero' resistance accompanied by high inductance B. no resistance accompanied by stray inductance C. infinite resistance in addition to no inductance D. infinite resistance in addition to normal inductance

Last Answer : Answer: C

Description : Alternating current circuits develop resistance, inductance and capacitance. The inductance of a coil is expressed in _____________. A. ohms B. mhos C. henrys D. farads

Last Answer : Answer: C

Description : When both the inductance and resistance of a coil are doubled the value of?

Last Answer : When both the inductance and resistance of a coil are doubled the value of time constant remains unchanged.

Description : Three identical, each of emf 2 V and internal resistance `0.2 Omega` are connected in series to an external resistor of `7.4 Omega`. Calculate the cur

Last Answer : Three identical, each of emf 2 V and internal resistance `0.2 Omega` are connected in series to ... 7.4 Omega`. Calculate the current in the circuit.

Description : 10 cells, each of internal resistance `0.5 Omega` and 1.2 V emf are connected (a) all in series and (b) all in paralle. Calculate the current sent in

Last Answer : 10 cells, each of internal resistance `0.5 Omega` and 1.2 V emf are connected (a) all in ... each case through a wire of resistance `0.8 Omega`.

Description : A neon flashlight cell with an emf of 1.5V gives a current of 15A when connected directly to an ammeter of resistance 0.04?. Internal resistance of the cell is a. 0.0004? b. 0.06? c. 0.10? d. 0.13?

Last Answer : b. 0.06?

Description : The emf of a battery is 4.0 V and its internal resistance is `1.5 Omega`. Its potential difference is measured by a voltmeter of resistance `1000 Omeg

Last Answer : The emf of a battery is 4.0 V and its internal resistance is `1.5 Omega`. Its potential ... percentage error in the reading of emf shown by voltmeter.

Description : In the circuit shown in Fig. 4.64, the battery has an emf of 12.0 V and an internal resistance of `5R//11`. If the ammeter reads 2.0 A, what is the va

Last Answer : In the circuit shown in Fig. 4.64, the battery has an emf of 12.0 V and an internal resistance of ` ... ammeter reads 2.0 A, what is the value of R ?

Description : Find the time constant in a series R-L circuit when the resistance is 4 ohm and the inductance is 2 H. a) 0.25 b) 0.2 c) 2 d) 0.5

Last Answer : d) 0.5

Description : An electron in potentiometer experiences a force `2.4xx10^(-19)N`. The length of potentiometer wire is 6m. The emf of the battery connected across the

Last Answer : An electron in potentiometer experiences a force `2.4xx10^(-19)N`. The length of potentiometer wire is 6m. The emf of ... 6 V B. 9 V C. 12 V D. 15 V

Description : `B_(1), B_2 and B_3` are the three identical bulbs connected to a battery of steady emf with key `K` closed. What happens to the brightness of the bul

Last Answer : `B_(1), B_2 and B_3` are the three identical bulbs connected to a battery of steady emf with key `K` ... of the bulbs `B_(1)` and `B_(2)` decreases

Description : Two nonideal batteries are connected in parallel. Consider the following statements: (A)The equivalent emf is smaller than either of the two emfs. (B)

Last Answer : Two nonideal batteries are connected in parallel. Consider the following statements: (A)The equivalent emf is ... wrong D. Both A and B are correct

Description : Which of the following types of DC motors has its field connected in parallel with its armature? A. Counter EMF B. Shunt C. Salient pole D. Series

Last Answer : Answer: B

Description : Four inductors each of inductance 1mH are connected in parallel and this combination is connected in series with two inductors each of inductance 1mH. Calculate the equivalent inductance?

Last Answer : Four inductors each of inductance 1mH are connected in parallel and this combination is connected in series with two inductors each of inductance 1mH. Calculate the equivalent inductance? 2.25 mH

Description : A network consists of several inductances connected in parallel. The equivalent inductance of the network is given by (A) the sum of the individual inductances. (B) the reciprocal of the ... of individual inductances. (D) the reciprocal of the sum of reciprocals of individual inductances.

Last Answer : A network consists of several inductances connected in parallel. The equivalent inductance of the network is given by the reciprocal of the sum of reciprocals of individual inductances.

Description : The current in ampere through an inductor is i(10+20t) Here t is in second. The induced emf in the inductor 4V. The self inductance of the indicator i

Last Answer : The current in ampere through an inductor is i(10+20t) Here t is in second. The induced emf in the inductor 4V. The ... B. `0.4` C. `0.1` D. `1.0`