A platinum resistance thermometer makes use of the variation of a conductor with temperature. If the resistance of this thermometer is `5 Omega " at "

1 Answer

Answer :

A platinum resistance thermometer makes use of the variation of a conductor with temperature. If the resistance ... for the platinum `=0.0036^(@)C`.

Related questions

Description : The resistance of a coil used in a platinum-resistance thermometer at `0^(@)C` is `3.00 Omega` and at `100^(@)C` is `3.75 Omega`. Its resistance at an

Last Answer : The resistance of a coil used in a platinum-resistance thermometer at `0^(@)C` is `3.00 Omega ... as `3.15 Omega`. Calculate the unknown temperature.

Description : List two advantages of platinum resistance thermometer.

Last Answer : 1. The platinum resistance thermometer is stable 2. It is resistant to corrosion 3. It is resistant to oxidation

Description : List any 4 advantages of platinum resistance Thermometer.

Last Answer : Advantages : 1. Highly accurate measurement. 2. Linear characteristics. 3. Wide range of measurement. 4. Greater Stability and repeatability over measurement.

Description : Give any two advantages of platinum resistance thermometer

Last Answer : 1. The resistance temperature characteristic of RTDs is linear. 2 They have a wide operating temperature range: from minus 200 to plus 650°C. 3. They have high degree of accuracy and long term ... . 6. They can be used to measure differential pressure also. 7. No compensation circuit required. 

Description : A potential difference of 10 V is applied across a conductor of resistance `1 k Omega`. Find the number of electrons flowing through the conductor in

Last Answer : A potential difference of 10 V is applied across a conductor of resistance `1 k Omega`. ... of electrons flowing through the conductor in 5 minutes.

Description : For which of the following substances, the resistance decreases with increase in temperature? (1) Pure silicon (2) Copper (3) Nichrome (4) Platinum

Last Answer : (3) Nichrome Explanation: Nichrome has high resistance and it is called a resistor.

Description : For which of the following substances, the resistance decreases with increase in temperature? (1) Pure silicon (2) Copper (3) Nichrome (4) Platinum

Last Answer : Nichrome

Description : The temperature coefficient of a resistance wire is `0.00 12.5^(@)C^(-1)`. At 300 K, its resistance is `1 Omega`. At what temperature the resistance o

Last Answer : The temperature coefficient of a resistance wire is `0.00 12.5^(@)C^(-1)`. At 300 K, its ... the resistance of the wire will be `2 Omega` ?

Description : The resistance of a silver wire at `0^(@)C " is " 1.25 Omega`. Upto what temperature it must be heated so that its resistance is doubled ? The tempera

Last Answer : The resistance of a silver wire at `0^(@)C " is " 1.25 Omega`. Upto what temperature ... temperature be same for all silver conductors of all shapes ?

Description : A standard coil marked `3 Omega` is found to have a true resistance of `3.115 Omega` at 300 K. Calculate the temperature at which marking is correct.

Last Answer : A standard coil marked `3 Omega` is found to have a true resistance of `3.115 Omega` at 300 K. Calculate the ... is `4.2xx10^(-3) .^(@)C^(-1)`.

Description : The temperature coefficient of resistance of the material of a wire is `0.00125^(@)C^(-1)`. Its resistance at `27^(@)C` is `1 Omega`. At what temperat

Last Answer : The temperature coefficient of resistance of the material of a wire is `0.00125^(@)C^(-1)`. Its resistance at ... K B. 1100 K C. 1400 K D. 1127 K

Description : A _______ is used to measure the stator % winding temperature of the generator. (a) thermocouple (b) pyrometer (c) resistance thermometer (d) thermometer

Last Answer : (c) resistance thermometer

Description : By which of the following methods the temperature rise of windings and other parts may be determined ? (a) Thermometer method (6) Resistance method (c) Embedded temperature detector method (d) Any of the above

Last Answer : (d) Any of the above

Description : The slope of the graph showing the variation of potential difference V on X-axis and current Y-axis gives conductor

Last Answer : The slope of the graph showing the variation of potential difference V on X-axis and ... resistivity C. reciprocal of resistance D. conductivity

Description : Find the minimum number of cells required to produce an electric current of 1.5 A through a resistance of `30 Omega`. Given that the emf of each cell

Last Answer : Find the minimum number of cells required to produce an electric current of 1.5 A through a resistance ... .5 V and internal resistance `1.0 Omega`.

Description : Three identical cells each of emf 2 V and unknown internal resistance are connected in parallel. This combination is connected to a `5 Omega` resistor

Last Answer : Three identical cells each of emf 2 V and unknown internal resistance are connected in parallel. ... what is the internal resistance of each cell ?

Description : 10 cells, each of internal resistance `0.5 Omega` and 1.2 V emf are connected (a) all in series and (b) all in paralle. Calculate the current sent in

Last Answer : 10 cells, each of internal resistance `0.5 Omega` and 1.2 V emf are connected (a) all in ... each case through a wire of resistance `0.8 Omega`.

Description : The emf of a battery is 4.0 V and its internal resistance is `1.5 Omega`. Its potential difference is measured by a voltmeter of resistance `1000 Omeg

Last Answer : The emf of a battery is 4.0 V and its internal resistance is `1.5 Omega`. Its potential ... percentage error in the reading of emf shown by voltmeter.

Description : When a resistance of `2 Omega` is placed across the terminals of a battery, the current is 0.5 A. When the resistance across the terminals of the batt

Last Answer : When a resistance of `2 Omega` is placed across the terminals of a battery, the current is 0 ... emf of the battery and also its internal resistance.

Description : A battery of emf 2 V and internal resistance `0.5 Omega` is connected across a resistance of `9.5 Omega`. How many electrons pass through a cross-sect

Last Answer : A battery of emf 2 V and internal resistance `0.5 Omega` is connected across a resistance of `9. ... a cross-section of the resistance in 1 second ?

Description : The potential differnce between the terminals of a battery of emf 6.0 V and internal resistance `1 Omega` drops to 5.8 V when connected across an exte

Last Answer : The potential differnce between the terminals of a battery of emf 6.0 V and internal resistance ... resistor . Find the resistance of the external res

Description : Determine the voltage drop across the resistance `R_(1)` in the circuit given in Fig. 4.55 with `epsilon=90 V, R_(1)=5 k Omega, R_(2)=5k Omega, R_(3)=

Last Answer : Determine the voltage drop across the resistance `R_(1)` in the circuit given in Fig. 4.55 with `epsilon=90 V, ... k Omega " and " R_(4)=10 k Omega`.

Description : A `5 Omega` resistor is connected in series with a parallel combination of n resistors of `6 Omega` each. The equivalent resistance is `7 Omega`. Find

Last Answer : A `5 Omega` resistor is connected in series with a parallel combination of n resistors of `6 Omega ... The equivalent resistance is `7 Omega`. Find n.

Description : (i) Three resistors `2 Omega, 4 Omega " and " 5 Omega` are comined in parallel. What is the total resistance of the combination ? (ii) If the comnbina

Last Answer : (i) Three resistors `2 Omega, 4 Omega " and " 5 Omega` are comined in parallel. What ... current through each resistor, and the total current drawn.

Description : Six resistance each of value `r=5 Omega` are connected between points A, B and C as shown in figure. If `R_(1), R_(2)` and `R_(3)` are the net resista

Last Answer : Six resistance each of value `r=5 Omega` are connected between points A, B and C as shown in figure. If `R_(1), R_(2) ... 1:2:3` C. `5:4:3` D. `4:3:2`

Description : The resistance in the two arms of the meter bridge are `5 Omega` and `R Omega`, respectively. When the resistance `R` is shunted with an equal resista

Last Answer : The resistance in the two arms of the meter bridge are `5 Omega` and `R Omega`, respectively. When the ... 15 Omega` C. `20 Omega` D. `25 Omega`

Description : A `1 Omega` resistance in series with an ammeter is balanced by 25 cm of potentiometer by 50 cm. The ammeter shows a reding of `1.5 A`. Then, the erro

Last Answer : A `1 Omega` resistance in series with an ammeter is balanced by 25 cm of potentiometer by 50 cm. The ammeter shows a ... B. 3A C. `1.3 A` D. `0.3A`

Description : In given figure, the potentiometer wire AB has a resistance of `5 Omega` and length 10 m . The balancing length AM for the emf of 0.4 V is

Last Answer : In given figure, the potentiometer wire AB has a resistance of `5 Omega` and length 10 m . The balancing length AM for ... B. 4 m C. `0.8` m D. 8 m

Description : In the given circuit, the voltmeter records 5 V. The resistance of the voltmeter in `Omega` is

Last Answer : In the given circuit, the voltmeter records 5 V. The resistance of the voltmeter in `Omega` is A. 200 B. 100 C. 10 D. 50

Description : A `100 V` voltmeter of internal resistance `20 k Omega` in series with a high resistance `R` is connected to a `110 V` line. The voltmeter reads `5 V`

Last Answer : A `100 V` voltmeter of internal resistance `20 k Omega` in series with a high resistance `R` is ... B. `315kOmega` C. `420kOmega` D. `440kOmega`

Description : A resistance of `4 Omega` and a wire of length 5 meters and resistance `5 Omega` are joined in series and connected to a cell of e.m.f. `10 V` and int

Last Answer : A resistance of `4 Omega` and a wire of length 5 meters and resistance `5 Omega` are joined in series and connected ... `3.0V` C. `0.67V` D. `1.33V`

Description : The value of current in the \( 6 \Omega \) resistance is:

Last Answer : The value of current in the \( 6 \Omega \) resistance is:

Description : When 10 cells in series are connected to the ends of a resistance of `59 Omega`, the current is found to be 0.25 A, but when the same cells after bein

Last Answer : When 10 cells in series are connected to the ends of a resistance of `59 Omega`, the ... Calculate the internal resistance and emf of each cell.

Description : How would you arrange 64 similar cells each having an emf of 2.0 V and internal resistance `2 Omega` so as to send maximum current through an external

Last Answer : How would you arrange 64 similar cells each having an emf of 2.0 V and internal resistance ` ... current through an external resistance of `8 Omega`.

Description : A 20 V battery of internal resistance `1 Omega` is connected to three coils of `12 Omega, 6 Omega` and `4 Omega` in parallel, a resistor of `5Omega` a

Last Answer : A 20 V battery of internal resistance `1 Omega` is connected to three coils of `12 ... and the terminal potential difference across each battery.

Description : Three identical, each of emf 2 V and internal resistance `0.2 Omega` are connected in series to an external resistor of `7.4 Omega`. Calculate the cur

Last Answer : Three identical, each of emf 2 V and internal resistance `0.2 Omega` are connected in series to ... 7.4 Omega`. Calculate the current in the circuit.

Description : The reading of a voltmoter when a cell is connected to it is 2.2 V. When the terminals of the cell are connected to a resistance of `4 Omega`, the vol

Last Answer : The reading of a voltmoter when a cell is connected to it is 2.2 V. When the terminals of the ... to 2 V. Find the internal resistance of the cell.

Description : In the circuit diagram shown in Fig. 4.53, a voltmeter reads 30 V when connected across `400 Omega` resistance. Calculate what the same voltmeter read

Last Answer : In the circuit diagram shown in Fig. 4.53, a voltmeter reads 30 V when connected across `400 ... when it is connected across `300 Omega` resistance.

Description : A plantinum wire has resistance of `10 Omega` at `0^(@)C` and `20 Omega` at `273^(@)C`. Find the value of coefficient of resistance.

Last Answer : A plantinum wire has resistance of `10 Omega` at `0^(@)C` and `20 Omega` at `273^(@)C`. Find the value of coefficient of resistance.

Description : The resistance of two conductors in series is `18 Omega` and the resistance becomes `4 Omega` when connected in parallel. Find the resistance of indiv

Last Answer : The resistance of two conductors in series is `18 Omega` and the resistance becomes `4 ... in parallel. Find the resistance of individual conductors.

Description : A uniform wire which connected in parallel with the 2 m long wire, will give a resistance of `2.0 Omega`.

Last Answer : A uniform wire which connected in parallel with the 2 m long wire, will give a resistance of `2.0 Omega`.

Description : Given three resistances of `30 Omega` each. How can they be connected to given a total resistance of (i) `90 Omega (ii) 10 Omega (iii) 45 Omega` ?

Last Answer : Given three resistances of `30 Omega` each. How can they be connected to given a total resistance of (i) `90 Omega (ii) 10 Omega (iii) 45 Omega` ?

Description : How can the resistances of `2Omega, 3 Omega " and " 6 Omega` be connected to give an effective resistance of `4 Omega` ?

Last Answer : How can the resistances of `2Omega, 3 Omega " and " 6 Omega` be connected to give an effective resistance of `4 Omega` ?

Description : Three resistors of `1 Omega, 2 Omega " and " 3 Omega` are combined in series. (i) What is the total resistance of the combination ? (ii) If the combin

Last Answer : Three resistors of `1 Omega, 2 Omega " and " 3 Omega` are combined in series. ( ... resistance, obtain the potential dropo across each resistor.

Description : A uniform wire is cut into four segments. Each segment is twice as long as the earlier segment. If the shortest segment has a resistance of `4 Omega`,

Last Answer : A uniform wire is cut into four segments. Each segment is twice as long as the earlier segment. ... Omega`, find the resistance of the original wire.

Description : A wire of resistance `48 Omega` is uniformly stretched until its new length becomes 4 times the original length. Find its new resistance.

Last Answer : A wire of resistance `48 Omega` is uniformly stretched until its new length becomes 4 times the original length. Find its new resistance.

Description : Given that resistivity of copper is `1.68xx10^(-8) Omega`m. Calculate the amount of copper required to draw a wire 10 km long having resistance of `10

Last Answer : Given that resistivity of copper is `1.68xx10^(-8) Omega`m. Calculate the amount of copper required to draw a ... copper is `8.9xx10^(3) kg m^(-3)`.

Description : What length of a wire of diameter 0.46 mm and specific resistance `50xx10^(-6) Omega`m would be required to make a coil of resistance `10 Omega` ?

Last Answer : What length of a wire of diameter 0.46 mm and specific resistance `50xx10^(-6) Omega`m would be required to make a coil of resistance `10 Omega` ?

Description : Calculate the conductivity of a wire of length 2 m, area of cross-sectionl `2 cm^(2)` and resistance `10^(-4) Omega`.

Last Answer : Calculate the conductivity of a wire of length 2 m, area of cross-sectionl `2 cm^(2)` and resistance `10^(-4) Omega`.

Description : Two copper wires A and B of equal masses are taken. The length of A is double the length of B. If the resistance of wire A is `160 Omega `, then calcu

Last Answer : Two copper wires A and B of equal masses are taken. The length of A is double the length of ... Omega `, then calculate the resistance of the wire B.