A 60 Hz, 4 pole turbo generator rated 100 MVA, 13.8 KV has an inertia constant of 10 MJ/MVA. Find the stored energy in the rotor at synchronous speed. 

(A) 10 MJ (B) 100 J (C) 1000 J (D) 1000 MJ 

2 Answers

Answer :


KE is equal to H X S
D. 1000 MJ

Answer :

c

Related questions

Description : A 50 Hz, 4-pole, 500 MVA, 22 kV turbo-generator is delivering rated megavolt amperes at 0.8 power factor. Suddenly a fault occurs reducing in electric power output by 40%. Neglect losses and assume constant power input to the ... the time of fault will be  (A) 1.528 (B) 1.018 (C) 0.848 (D) 0.509

Last Answer : A 50 Hz, 4-pole, 500 MVA, 22 kV turbo-generator is delivering rated megavolt amperes at 0.8 power factor. Suddenly a fault occurs reducing in electric power output by 40%. Neglect losses and assume ... the shaft. The accelerating torque in the generator in MNm at the time of fault will be 1.018 

Description : A 50 Hz, 4 pole turboalternator rated at 20 MVA. 13.2 KV has an inertia constant H = 4 KW sec/KVA. The K.E. stored in the rotor at synchronous speed is

Last Answer : A 50 Hz, 4 pole turboalternator rated at 20 MVA. 13.2 KV has an inertia constant H = 4 KW sec/KVA. The K.E. stored in the rotor at synchronous speed is 80 MJ

Description : A 100 MVA, 11 KV, 3-phase, 50 Hz, 8—pole synchronous generator has an inertia constant H equal to 4 seconds. The stored energy in the rotor of the generator at synchronous speed will be  A) 100 MJ B) 400 MJ C) 800 MJ D) 12.5 MJ

Last Answer : 800

Description : The inertia constant of a 100 MVA, 11 kV water wheel generator is 4. The energy stored in the rotor at the synchronous speed is: A) 400 Mega Joule B) 400 Kilo Joule C) 25 Mega Joule D) 25 Kilo Joule

Last Answer : The inertia constant of a 100 MVA, 11 kV water wheel generator is 4. The energy stored in the rotor at the synchronous speed is: 400 Mega Joule

Description : A generator is connected through a 20 MVA, 13.8/138 kV step down transformer, to a transmission line. At the receiving end of the line a load is supplied through a step down transformer of 10 MVA, 138/69 kV rating. A 0.72 ... load (in per unit) in generator will be (A) 36 (B) 1.44 (C) 0.72 (D) 0.18

Last Answer : A generator is connected through a 20 MVA, 13.8/138 kV step down transformer, to a transmission line. At the receiving end of the line a load is supplied through a step down transformer of 10 MVA, 138/ ... MVA and 69 kV in load circuit, the value of the load (in per unit) in generator will be 36 

Description : A 3-phase circuit breaker is rated at 1250 A, 2000 MVA, 33 kV, 4s. Its making current capacity will be   (a) 35 kA (b) 89 kA (c) 79 kA (d) 69 kA

Last Answer : 89

Description : A single phase transformer rated at 3000 kVA, 69 kV 4.16 kV, 60 Hz has a total internal impedance Zp of 127 ohm, referred to the primary side. Calculate the primary current if the secondary is accidentally short circuited.  (A) 43.5 A (B) 543 A (C) 9006 A (D) 721 A 

Last Answer : 543A

Description : A 3-phase star-connected 75 MVA, 25 kV 3-phase synchronous generator has a synchronous reactance of 1.0 p.u. The per unit value to a 90 MVA base and 30 kV is (A) 2/15 p.u. (B) 5/6 p.u. (C) 1.0 p.u. (D) 1.2 p.u.

Last Answer : A 3-phase star-connected 75 MVA, 25 kV 3-phase synchronous generator has a synchronous reactance of 1.0 p.u. The per unit value to a 90 MVA base and 30 kV is 5/6 p.u.

Description : A three-phase, 33 kV oil circuit breaker is rated 1200 A, 2000 MVA, 3 s. The symmetrical breaking current is  (A) 1200 A (B) 3600 A (C) 35 kA (D) 104.8 kA

Last Answer : A three-phase, 33 kV oil circuit breaker is rated 1200 A, 2000 MVA, 3 s. The symmetrical breaking current is 35 kA 

Description : A 500 MVA, 11 KV synchronous generator has 0.2 p.u. synchronous reactance. The p.u. synchronous reactance on the base values of 100 MVA and 22 KV is  A) 0.16 B) 0.01 C) 4.0 D) 0.25

Last Answer : A 500 MVA, 11 KV synchronous generator has 0.2 p.u. synchronous reactance. The p.u. synchronous reactance on the base values of 100 MVA and 22 KV is 0.01

Description : If the inertia constant H of a machine of 200 MVA is 2 p.u., its value corresponding to 400 MVA will be   (a) 4 p.u. (b) 2 p.u. (c) 1.0 p.u. (d) 0.5 p.u. 

Last Answer : If the inertia constant H of a machine of 200 MVA is 2 p.u., its value corresponding to 400 MVA will be 1.0 p.u.

Description : A 3-phase, 400 votts, 50 Hz, 100 KW, 4 pole squirrel cage induction motor with a rated slip of 2% will have a rotor speed of (A) 1500 rpm (B) 1470 rpm (C) 1530 rpm (D) 1570 rpm

Last Answer : Ans: B N = NS (1-S) and NS =120 f / p =120 x 50 /4 = 1500 rpm ∴N= 1500 (1-0.02) =1470 rpm

Description : A 3 phase, 400 volts, 50 Hz, 100 kW, 4 pole squirrel cage induction motor with a rated slip of 2% will have a rotor speed of: (A) 1500 rpm (B) 1470 rpm (C) 1530 rpm (D) 1570 rpm

Last Answer : 1470rpm

Description : A transmission line has 1 P.0 impedance on a base of 11 KV, 100 MVA. On a base of 55 KV. it will have a P.0 impedance of

Last Answer : A transmission line has 1 P.0 impedance on a base of 11 KV, 100 MVA. On a base of 55 KV. it will have a P.0 impedance of 0.02 P.U

Description : The per unit impedance of a circuit element is 0.30. If the base kV and base MVA are halved, then the new value of the per unit impedance of the circuit element will be:  (A) 0.3 (B) 0.6 (C) 0.003 (D) 0.006 

Last Answer : 3

Description : Why the earthing transformer primary voltage is 16.5 kV rated in main generator even though actual voltage during the E/F is root 3 times less?

Last Answer : The transformer should not saturate during E/F otherwise it will cause ferroresonance with the GT winding capacitance. Dangerous O/V and neutral shifting will occur. During loss of load or field ... saturation. Saturation can also occur due to point on wave of application causing flux doubling. 

Description : A 500 MW, 3-phase, Y-connected synchronous generator has a rated voltage of 21.5 kV at 0.85 p.f. The line current when operating at full load rated conditions will be  (A) 13.43 kA (B) 15.79 kA (C) 23.25 kA (D) 27.36 kA

Last Answer : A 500 MW, 3-phase, Y-connected synchronous generator has a rated voltage of 21.5 kV at 0.85 p.f. The line current when operating at full load rated conditions will be 15.79 kA

Description : A balanced three-phase, 50 Hz voltage is applied to a 3 phase, 4 pole, induction motor. When the motor is delivering rated output, the slip is found to be 0.05. The speed of the rotor m.m.f. relative to the rotor structure is (A) 1500 r.p.m. (B) 1425 r.p.m. (C) 25 r.p.m. (D) 75 r.p.m.

Last Answer : (D) 75 r.p.m.

Description : The stator of a 415V, 50 Hz, 4-pole slip ring Induction Motor is excited by rated frequency with slip rings open circuited. The rotor is made to rotate at a speed of 600 rpm in the opposite direction to the ... frequency of induced voltage across slip ring is A) 30 Hz B) 70 Hz C) 20 Hz D) 35 Hz

Last Answer : The stator of a 415V, 50 Hz, 4-pole slip ring Induction Motor is excited by rated frequency with slip rings open circuited. The rotor is made to rotate at a speed of 600 rpm in the opposite direction to the normal direction, The frequency of induced voltage across slip ring is 70 Hz

Description : The locked rotor current in a 3-phase, star connected 15 , kW 4 , pole 230 V , 50 Hz induction motor at rated conditions is 50 A. Neglecting losses and magnetizing current, the approximate locked rotor line current drawn when the motor ... Hz supply is  (A) 58.5 A (B) 45.0 A (C) 42.7 A (D) 55.6 A

Last Answer : The locked rotor current in a 3-phase, star connected 15 , kW 4 , pole 230 V , 50 Hz induction motor at rated conditions is 50 A. Neglecting losses and magnetizing current, the approximate locked rotor line current drawn when the motor is connected to a 236 , V 57 Hz supply is 45.0 A 

Description : If we give 2334 A, 540V on Primary side of 1.125 MVA step up transformer, then what will be the Secondary Current, If Secondary Voltage=11 KV?

Last Answer : A. As we know the Voltage & current relation for transformer-V1/V2 = I2/I1 We Know, VI= 540 V; V2=11KV or 11000 V; I1= 2334 Amps. By putting these value on Relation540/11000= I2/2334 So,I2 = 114.5 Amps

Description : If we give 2334 A, 540V on Primary side of 1.125 MVA step up transformer, then what will be the Secondary Current, If Secondary Voltage=11 KV?

Last Answer :  As we know the Voltage & current relation for transformer-V1/V2 = I2/I1 We Know, VI= 540 V; V2=11KV or 11000 V; I1= 2334 Amps. By putting these value on Relation540/11000= I2/2334 So,I2 = 114.5 Amps

Description : A 20-MVA, 6.6-kV, 3-phase alternator is connected to a 3-phase transmission line. The per unit positive-sequence, negative-sequence and zero-sequence impedances of the alternator are j0.1, j0.1 and j0.04 respectively. The neutral of ... the fault is  (A) 513.8 V (B) 889.9 V (C) 1112.0 V (D) 642.2 V

Last Answer : A 20-MVA, 6.6-kV, 3-phase alternator is connected to a 3-phase transmission line. The per unit positive-sequence, negative-sequence and zero-sequence impedances of the alternator are j0.1, ... line. The voltage of the alternator neutral with respect to ground during the fault is 642.2 V

Description : A 3-phase 11 kV generator feeds power to a constant power unity power factor load of 100 MW through a 3-phase transmission line. The line-to line voltage at the terminals of the machine is maintained constant at 11 kV. The per ... 11 kV is  (A) 100 MVAR (B) 10.1 MVAR (C) -100 MVAR (D) -10.1 MVAR

Last Answer : A 3-phase 11 kV generator feeds power to a constant power unity power factor load of 100 MW through a 3-phase transmission line. The line-to line voltage at the terminals of the machine is maintained ... load to increase the line-to-line voltage at the load terminals to 11 kV is -10.1 MVAR

Description : A 12 -pole, 440 V, 50 Hz, 3 -phase synchronous motor takes a line current of 100 A at 0.8 pf leading. Neglecting losses, the torque developed will be

Last Answer : A 12 -pole, 440 V, 50 Hz, 3 -phase synchronous motor takes a line current of 100 A at 0.8 pf leading. Neglecting losses, the torque developed will be 1165 Nm

Description : What is the slip (as a percentage) when a 6 pole single phase induction motor operating on 220 V and 60 Hz is rotating at speed of 1140 rpm? A) 60% B) 5% C) 10% D) None of these

Last Answer : What is the slip (as a percentage) when a 6 pole single phase induction motor operating on 220 V and 60 Hz is rotating at speed of 1140 rpm? A) 60% B) 5% C) 10% D) None of these

Description : If the synchronous speed of a 12 pole, polyphase, induction motor operating at 60 Hz were 600 RPM, how many poles will be required in a similar motor operating at the same frequency but having a synchronous speed of 900 RPM? A. 4 B. 6 C. 8 D. 18

Last Answer : Answer: C

Description : An 8 pole wound rotor induction motor operating on 60 Hz supply is driven at 1800 r.p.m. by a prime mover in the opposite direction of revolving magnetic field. The frequency of the rotor current is (a) 30 Hz (b) 60 Hz (c) 120 Hz (d) 180 Hz 

Last Answer : 30 Hz As the frequency of the rotor is given by  F= N*P/120 so from the above equation the frequency of the rotor current can be easily calculated  i.e. 1800×8/120=30 Hence the required value of rotor frequency is 30 Hz

Description : The p.u. parameter for a 500 MVA machine on its own base are: inertia, M = 20 p.u. ; reactance, X = 2 p.u. The p.u. values of inertia and reactance on 100 MVA common base, respectively, are (A) 4, 0.4 (B) 100, 10 (C) 4, 10 (D) 100, 0.4

Last Answer : The p.u. parameter for a 500 MVA machine on its own base are: inertia, M = 20 p.u. ; reactance, X = 2 p.u. The p.u. values of inertia and reactance on 100 MVA common base, respectively, are 100, 0.4

Description : A four pole turbogenerator is used in conjunction with a 160 pole propulsion motor. If the generator is turning at 3,200 RPM, what is the current speed of the propeller? A. 40 RPM B. 60 RPM C. 80 RPM D. 100 RPM

Last Answer : Answer: C

Description : A single phase 60 Hz generator supplies an inductive load of 4500kW at a power factor of 0.80 lagging by means of a 20 km long overhead transmission line. The line resistance and inductance are 0.0195 ohm and 0.60 mH ... voltage regulation of the line.  (A) 12.59% (B) 16.34% (C) 32.68% (D) 41.15% 

Last Answer : Answer is C

Description : Calculate the Polar moment of inertia in m 4 of a single motor system from the following data: C = 8 GN/m 2 , L=9m, I = 600 Kg-m 2 , f=10 Hz a) 0.00027b) 0.00032 c) 0.00045 d) 0.00078

Last Answer : a) 0.00027

Description : The corona loss of a 3-phase transmission line is 100 kW at 60 kV/phase and 25 kW at 50 kV/phase. The disruptive critical voltage is (A) 40 kV (B) 43.6 kV (C) 49.6 kV (D) 50 kV

Last Answer : The corona loss of a 3-phase transmission line is 100 kW at 60 kV/phase and 25 kW at 50 kV/phase. The disruptive critical voltage is 40 kV

Description : A 3-phase, 11 kv, 50 Hz, 200 kW load has a power factor of 0.8 lag. A delta connected 3-phase capacitor is used to improve the power factor to unity. The capacitance perphase of the capacitor in micro-farads is?

Last Answer : A 3-phase, 11 kv, 50 Hz, 200 kW load has a power factor of 0.8 lag. A delta connected 3-phase capacitor is used to improve the power factor to unity. The capacitance perphase of the capacitor in micro-farads is 1.316.

Description : A four pole, 60 Hz, three-phase synchronous motor comes up to 1760 RPM when started as an induction motor. What is the percent slip after the rotor field is energized? A. 0 B. 1.1 C. 2.2 D. 3.3

Last Answer : Answer: A

Description : A 60 Hz, 2 pole alternator should run at • a. 3000 r.p.m. c. 1500 r.p.m. • b. 3600 r.p.m. d. 1800 r.p.m.

Last Answer : A 60 Hz, 2 pole alternator should run at 3600 r.p.m.

Description : The synchronous speed of an 8 pole induction motor supplied power from a 50 Hz source will be ?

Last Answer : Ns         equals        f/pair pole 50/4      - 12.5

Description : An AC generator produces 60 Hz at 1800 RPM. If the generator speed is increased to 1830 RPM, the cycles will _____________. A. remain at 60 Hz B. increase to 61 Hz C. decrease to 59 Hz D. increase to 63 Hz

Last Answer : Answer: B

Description : The standard method of controlling the output voltage of a 440 volt, 60 Hz, AC generator is accomplished by adjusting the ____________. A. prime mover speed droop B. number of poles C. alternator field excitation D. load on the alternator

Last Answer : Answer: C

Description : The output voltage of a 440 volt, 60 Hz AC generator is controlled by the ______________. A. load on the alternator B. load on the prime mover C. speed of the prime mover D. exciter output voltage

Last Answer : Answer: D

Description : Electric field strength on a dust particle having charge equal to 8 × 10- 19 when plates are separated by distance of 2 cm and have a potential difference of 5 kV is A. 2.0 × 10-13 N B. 3 N C. 5 N D. 20 N

Last Answer : 2.0 × 10-13 N

Description : Human ear is most sensitive to noise in the following frequency ranges: (A) 1-2 KHz (B) 100-500 Hz (C) 10-12 KHz (D) 13-16 KHz

Last Answer : (A) 1-2 KHz

Description : In a certain three -wire Y -connected generator, the phase voltages are 2 kV. The magnitudes of the line voltages will be: A. 2,000 V B. 6,000 V C. 666 V D. 3,464 V

Last Answer : In a certain three -wire Y -connected generator, the phase voltages are 2 kV. The magnitudes of the line voltages will be: 3,464 V

Description : The magnetizing reactance of a 4 kV/ 400 V, 50 Hz single-phase transformer on low voltage side is 35 Ω. The magnetizing reactance on the high voltage side is (A) 0.35 Ω (B) 3.5 Ω (C) 350 Ω (D) 3500 Ω

Last Answer : 3500

Description : The eddy current loss in a dc generator is 400 W at 40 Hz frequency of reversal and constant flux density. When frequency is increased to 50 Hz., eddy current loss is :  (A) 256 W (B) 320 W (C) 500 W (D) 625 W

Last Answer : The eddy current loss in a dc generator is 400 W at 40 Hz frequency of reversal and constant flux density. When frequency is increased to 50 Hz., eddy current loss is : 625 W

Description : For transmission of power over a distance of 500 km, the transmission voltage should be in the range (a) 150 to 220 kV (b) 100 to 120 kV (c) 60 to 100 kV (d) 20 to 50 kV

Last Answer : (a) 150 to 220 kV

Description : Transmission voltage of ll kV is normally used for distances upto (a) 20—25 km (b) 40—50 km (c) 60—70 km (d) 80—100 km

Last Answer : (a) 20—25 km

Description : The number of insulator discs (each rated 11 kV) required in a suspension type insulator string of 220 kV line is 

Last Answer : The number of insulator discs (each rated 11kV) required in a suspension type insulator string of 220 kV line is 16

Description : What will be the frequency of a three-phase, six pole, AC generator operating at 1800 revolutions per minute? A. 60 hertz B. 90 hertz C. 120 hertz D. 180 hertz

Last Answer : Answer: B

Description : The power input to the rotor of a 400V, 50 Hz 6 pole three phase induction motor is 20kW. The slip is 3%. The frequency of rotor currents is: (A) 1 Hz (B) 1.5 Hz (C) 2 Hz (D) 1 2 Hz

Last Answer : C