Given triangle ABC with medians AE, BF, CD; FH parallel and equal in length to AE; BH and HE are drawn; -Maths 9th

1 Answer

Answer :

answer:

Related questions

Description : In the figure CD, AE and BF are one-third of their respective sides. It is given that -Maths 9th

Last Answer : answer:

Description : Side AC of a right triangle ABC is divided into 8 equal parts. Seven line segments parallel to BC are drawn to AB from the points of division. -Maths 9th

Last Answer : answer:

Description : ABC is an isosceles triangle with AB = AC and BD, CE are its two medians. Show that BD = CE. -Maths 9th

Last Answer : Given ΔABC is an isosceles triangle in which AB = AC and BD, CE are its two medians. To show BD = CE.

Description : ABC is an isosceles triangle with AB = AC and BD, CE are its two medians. Show that BD = CE. -Maths 9th

Last Answer : Given ΔABC is an isosceles triangle in which AB = AC and BD, CE are its two medians. To show BD = CE.

Description : Let ABC be a triangle of area 16 cm^2 . XY is drawn parallel to BC dividing AB in the ratio 3 : 5. If BY is joined, then the area of triangle BXY is -Maths 9th

Last Answer : answer:

Description : ABC is an isosceles triangle in which AB=AC.AD bisects exterior angles PAC and CD parallel AB.Prove that-i)angle DAC=angle BAC ii)∆BCD is a parallelogram -Maths 9th

Last Answer : AB =AC(given) Angle ABC =angle ACB (angle opposite to equal sides) Angle PAC=Angle ABC +angle ACB (Exterior angle property) Angle PAC =2 angle ACB - - - - - - (1) AD BISECTS ANGLE PAC. ANGLE ... AND AC IS TRANSVERSAL BC||AD BA||CD (GIVEN ) THEREFORE ABCD IS A PARALLEGRAM. HENCE PROVED........

Description : ABC is an isosceles triangle in which AB=AC.AD bisects exterior angles PAC and CD parallel AB.Prove that-i)angle DAC=angle BAC ii)∆BCD is a parallelogram -Maths 9th

Last Answer : AB =AC(given) Angle ABC =angle ACB (angle opposite to equal sides) Angle PAC=Angle ABC +angle ACB (Exterior angle property) Angle PAC =2 angle ACB - - - - - - (1) AD BISECTS ANGLE PAC. ANGLE ... AND AC IS TRANSVERSAL BC||AD BA||CD (GIVEN ) THEREFORE ABCD IS A PARALLEGRAM. HENCE PROVED........

Description : In the given figure, ABC is an equilateral triangle of side length 30 cm. XY is parallel to BC, XP is parallel to AC and YQ is parallel to AB. -Maths 9th

Last Answer : answer:

Description : ABC is an isosceles triangle in which altitude BE and CF are drawn to equal sides AC and AB respectively (Fig. 7.15). Show that these altitudes are equal. -Maths 9th

Last Answer : In △ABE and △ACF, we have ∠BEA=∠CFA (Each 90 0 ) ∠A=∠A (Common angle) AB=AC (Given) ∴△ABE≅△ACF (By SAS congruence criteria) ∴BF=CF [C.P.C.T]

Description : ABCD is a rhombus and AB is produved to E and F such that AE=AB=BF prove that ED and FC are perpendicular to each other -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : triangle ABC is right angled at A. AL is drawn perpendicular to BC. Prove that /_ BAL = /_ ACB -Maths 9th

Last Answer : NEED ANSWER

Description : triangle ABC is right angled at A. AL is drawn perpendicular to BC. Prove that /_ BAL = /_ ACB -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : The lengths of the sides a, b, c of a ΔABC are connected by the relation a^2 + b^2 = 5c^2. The angle between medians drawn to the sides 'a' and 'b' is -Maths 9th

Last Answer : Let median through C be CF. AF=FB=c2 CF=122(a2+b2)−c2−−−−−−−−−−−−√=3c2 CG=c where G is the centroid and GF=c2 34( ... +M2b+9c24 c2=(23M2a)+(23M2b) BC2=AG2+BG2 So medians through A and B are perpendicular.

Description : If a line is drawn parallel to the base of an isosceles triangle to intersect its equal sides, prove that the quadrilateral, so formed is cyclic. -Maths 9th

Last Answer : Given ΔABC is an isosceles triangle such that AB = AC and also DE || SC. To prove Quadrilateral BCDE is a cyclic quadrilateral. Construction Draw a circle passes through the points B, C, D and E.

Description : If a line is drawn parallel to the base of an isosceles triangle to intersect its equal sides, prove that the quadrilateral, so formed is cyclic. -Maths 9th

Last Answer : Given ΔABC is an isosceles triangle such that AB = AC and also DE || SC. To prove Quadrilateral BCDE is a cyclic quadrilateral. Construction Draw a circle passes through the points B, C, D and E.

Description : ABC is an acute angled triangle. CD is the altitude through C. If AB = 8 units, CD = 6 units, find the distance -Maths 9th

Last Answer : answer:

Description : The lengths of three medians of a triangle are 9 cm, 12 cm and 15 cm. The area (in sq. cm) of this triangle is -Maths 9th

Last Answer : (b) 72 cm2Here sm = \(rac{9+12+15}{2}\) = 18 cm, where lengths of medians are m1 = 9 cm, m2 = 12 cm, m3 = 15 cm.∴ Area of triangle = \(rac{4}{3}\sqrt{18(18-9)(18-12)(18-15)}\) cm2= \(rac{4}{3}\sqrt{18 imes9 imes6 imes3}\) cm2 = \(rac{4}{3}\) x 9 x 6 cm2 = 72 cm2.

Description : The medians AD and BE of the triangle with vertices A(0, b), B(0, 0) and C(a, 0) are mutually perpendicular if -Maths 9th

Last Answer : (c) \(rac{b+k}{f+h}\)Let the slope of the lin passing through the points (-k, h) and (b, - f) be m1. Then m1 = \(rac{-f-h}{b+k}\) = \(-\bigg(rac{f+h}{b+k}\bigg)\)\(\bigg[Slope = rac{y_2-y_1}{x_2-x_1}\bigg]\) ... \(-rac{1}{m_1}\)= \(rac{-1}{-\big(rac{f+h}{b+k}\big)}\) = \(\bigg(rac{b+k}{f+h}\bigg)\)

Description : The area of a plane triangle ABC, having its base AC and perpendicular height , is  (A) ½ bh (B) ½ ba sin C (C) ½ bc sin A (D) All the above

Last Answer : (D) All the above

Description : ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that (i) D is the mid-point of AC (ii) MD ⊥ AC (iii) CM = MA = ½ AB -Maths 9th

Last Answer : Solution: (i) In ΔACB, M is the midpoint of AB and MD || BC , D is the midpoint of AC (Converse of mid point theorem) (ii) ∠ACB = ∠ADM (Corresponding angles) also, ∠ACB = 90° , ∠ADM = 90° and MD ⊥ AC (iii ... SAS congruency] AM = CM [CPCT] also, AM = ½ AB (M is midpoint of AB) Hence, CM = MA = ½ AB

Description : ABC is a triangle right-angled at C. A line through the mid-point M of hypotenuse AB parallel to BC intersects AC ad D. -Maths 9th

Last Answer : Given: A △ABC , right - angled at C. A line through the mid - point M of hypotenuse AB parallel to BC intersects AC at D. To Prove: (i) D is the mid - point of AC (ii) MD | AC (iii) CM = MA = 1 / 2 ... congruence axiom] ⇒ AM = CM Also, M is the mid - point of AB [given] ⇒ CM = MA = 1 / 2 = AB.

Description : ABC is a triangle right-angled at C. A line through the mid-point M of hypotenuse AB parallel to BC intersects AC ad D. -Maths 9th

Last Answer : Given: A △ABC , right - angled at C. A line through the mid - point M of hypotenuse AB parallel to BC intersects AC at D. To Prove: (i) D is the mid - point of AC (ii) MD | AC (iii) CM = MA = 1 / 2 ... congruence axiom] ⇒ AM = CM Also, M is the mid - point of AB [given] ⇒ CM = MA = 1 / 2 = AB.

Description : ABC is a triangle right-angled at C. A line through the mid-point of hypotenuse AB and parallel to BC intersects AC at D. Show that -Maths 9th

Last Answer : Solution :-

Description : The area of triangle ABC is 15 cm sq. If ΔABC and a parallelogram ABPD are on the same base and between the same parallel lines then what is the area of parallelogram ABPD. -Maths 9th

Last Answer : area of parallelogram=2× area of triangle ABC =2×15=30sq cm theorem on area

Description : a squar ABCD in which AC =BE when BC produced .A is joined to E prove that FG=GE when AE intersect BD at F and CD at G -Maths 9th

Last Answer : Please give the figure to get your answer, as it is necessary to have figure to answer the question related to geometry.

Description : ABCD is a parallelogram in which BC is produced to E such that CE = BC. AE intersects CD at F. -Maths 9th

Last Answer : According to question find the area of the parallelogram ABCD.

Description : a squar ABCD in which AC =BE when BC produced .A is joined to E prove that FG=GE when AE intersect BD at F and CD at G -Maths 9th

Last Answer : Please give the figure to get your answer, as it is necessary to have figure to answer the question related to geometry.

Description : ABCD is a parallelogram in which BC is produced to E such that CE = BC. AE intersects CD at F. -Maths 9th

Last Answer : According to question find the area of the parallelogram ABCD.

Description : In Fig. 9.23, ABCD is a parallelogram in which BC is produced to E such A B that CE = BC. AE intersects CD at F. If area of △BDF = 3 cm2, find the area of parallelogram ABCD. -Maths 9th

Last Answer : Solution :-

Description : ABCD is a parallelogram.The circle through A,B and C intersect CD (produce if necessary) at E.Prove that AE = AD. -Maths 9th

Last Answer : Solution :- ∠ABC + ∠AEC = 1800 (Opposite angles of cyclic quadrilateral) .. . (i) ∠ADE + ∠ADC = 1800 (Linear pair) But ∠ADC = ∠ABC (Opposite angles of ||gm) ∴ ∠ADE + ∠ABC = 1800 .. (ii) ... ∠ABC + ∠AEC = ∠ADE + ∠ABC ⇒ ∠AEC = ∠ADE ⇒ AD = AE (sides opposite to equal angles)

Description : A(5,0) and B(0,8) are two vertices of triangle OAB. a). What is the equation of the bisector of angle OAB. b). If E is the point of intersection of this bisector and the line through A and B,find the coordinates of E. Hence show that OA:OB = AE:EB -Maths 9th

Last Answer : NEED ANSWER

Description : A(5,0) and B(0,8) are two vertices of triangle OAB. a). What is the equation of the bisector of angle OAB. b). If E is the point of intersection of this bisector and the line through A and B,find the coordinates of E. Hence show that OA:OB = AE:EB -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : If A (-2, 4), B (0, 0) and C (4, 2) are the vertices of triangle ABC, then find the length of the median through the vertex A. -Maths 9th

Last Answer : D=slid ht of BC D≅(20+4​,20+2​) =(2,1) ∴ Length of median = Light of AD =root(−2−2)2+(4−1)2​=root42+32​=5 hope it helps thank u

Description : In triangle ABC, D and E are mid-points of the sides BC and AC respectively. Find the length of DE. Prove that DE = 1/2AB. -Maths 9th

Last Answer : First Find the points D and E by midpoint formula. (x₂+x₁/2 , y₂+y₁/2) For DE=1/2AB In ΔsCED and CAB ∠ECD=∠ACB and the ratio of the side containing the angle is same i.e, CD=1/2BC ⇒CD/BC=1/2 EC=1/2AC ⇒EC/AC=1/2 ∴,ΔCED~ΔCAB hence the ratio of their corresponding sides will be equal, DE=1/2AB

Description : In figure, ABCDE is any pentagon. BP drawn parallel to AC meets DC produced at P and EQ drawn parallel to AD meets CD produced at Q. -Maths 9th

Last Answer : Given ABCDE is a pentagon. BP || AC and EQ|| AD. To prove ar (ABCDE) = ar (APQ) Proof We know that, triangles on the same base and between the same parallels are equal in area. Here, ΔADQ and ΔADE lie on the ... ar (ΔACD) = ar (ΔADE) + ar (ΔACB) + ar (ΔACD) ⇒ ar (ΔAPQ) = ar (ABCDE) Hence proved.

Description : In figure, ABCDE is any pentagon. BP drawn parallel to AC meets DC produced at P and EQ drawn parallel to AD meets CD produced at Q. -Maths 9th

Last Answer : Given ABCDE is a pentagon. BP || AC and EQ|| AD. To prove ar (ABCDE) = ar (APQ) Proof We know that, triangles on the same base and between the same parallels are equal in area. Here, ΔADQ and ΔADE lie on the ... ar (ΔACD) = ar (ΔADE) + ar (ΔACB) + ar (ΔACD) ⇒ ar (ΔAPQ) = ar (ABCDE) Hence proved.

Description : In Fig. 9.30, ABCDE is any pentagon. BP drawn parallel to AC meets DC produced at P and EQ drawn parallel to AD meets CD produced at Q. Prove that ar (ABCDE) = ar(APQ). -Maths 9th

Last Answer : hope its clearhope its clear

Description : X and y are points on the side LN of the triangle LMN , such that LX = XY = YN . Through X, a line is drawn parallel to LM to meet MN at Z. -Maths 9th

Last Answer : Here, △XZM and △XZL are on the same base (XZ) and lie between the same parallels (XZ || LM). ∴ ar(△XZL) = ar( △XZM) Adding ar(△XZY) on both sides , we have ar(△XZL) + ar(△XZY) = ar(△XZM) + ar(△XZY) ⇒ ar(△LZY) = ar(quad.MZYX)

Description : X and y are points on the side LN of the triangle LMN , such that LX = XY = YN . Through X, a line is drawn parallel to LM to meet MN at Z. -Maths 9th

Last Answer : Here, △XZM and △XZL are on the same base (XZ) and lie between the same parallels (XZ || LM). ∴ ar(△XZL) = ar( △XZM) Adding ar(△XZY) on both sides , we have ar(△XZL) + ar(△XZY) = ar(△XZM) + ar(△XZY) ⇒ ar(△LZY) = ar(quad.MZYX)

Description : In the diagram AB and AC are the equal sides of an isosceles triangle ABC, in which is inscribed equilateral triangle DEF. -Maths 9th

Last Answer : answer:

Description : In an equilateral triangle ABC, the side BC is trisected at D. Then AD^2 is equal to -Maths 9th

Last Answer : answer:

Description : In given figure, AD = 3 cm, AE = 5 cm, BD = 4 cm, CE = 4 cm, CF = 2 cm, BF = 2.5 cm, then (a) DE || BC (b) DF || AC (c) EF || AB (d) none of

Last Answer : (c) EF || AB

Description : In the given figure, ABC is a triangle in which CDEFG is a pentagon. Triangles ADE and BFG are equilateral -Maths 9th

Last Answer : (b) 7√3 cm2.AB = 6 cm, ∠C = 60º (∴ ∠A = ∠B = 60º) ∴ ΔABC is an equilateral triangle Area of ΔABC = \(rac{\sqrt3}{4}\) × (6)2 = 9√3 Area of (ΔADE + ΔBFG) = 2 x \(\bigg(rac{\sqrt3}{4} imes(2)^2\bigg)\) = 2√3 ∴ Area of pentagon = 9√3 - 2√3 = 7√3 cm2.

Description : ABCD is a trapezium with AB and CD as parallel sides. The diagonals intersect at O. The area of the triangle ABO is p and that of triangle CDO is q. -Maths 9th

Last Answer : answer:

Description : A circle with centre O and diameter COB is given. If AB and CD are parallel, then show that chord AC is equal to chord BD. -Maths 9th

Last Answer : O Join AC and BD. Given, COB is the diameter of circle. ∠CAB = ∠BDC = 90° [angle in a semi-circle] Also, AB II CD ∠ABC = ∠DCB (alternate angles] Now, ∠ACB = 90° - ∠ABC and ∠DBC = 90° - ∠DCB = ... = ∠DBC BC = BC [common sides] ΔABC = ΔDCB [by ASA congruency] ∴ AC = BD [by CPCT] Hence Proved.

Description : A circle with centre O and diameter COB is given. If AB and CD are parallel, then show that chord AC is equal to chord BD. -Maths 9th

Last Answer : O Join AC and BD. Given, COB is the diameter of circle. ∠CAB = ∠BDC = 90° [angle in a semi-circle] Also, AB II CD ∠ABC = ∠DCB (alternate angles] Now, ∠ACB = 90° - ∠ABC and ∠DBC = 90° - ∠DCB = ... = ∠DBC BC = BC [common sides] ΔABC = ΔDCB [by ASA congruency] ∴ AC = BD [by CPCT] Hence Proved.

Description : PQRS is a square. A is a point on PS ,B is a point on PQ,C is a point on QR. ABC is a triangle inside square PQRS. Angle abc = 90° . If AP=BQ=CR then prove that angle BAC =45° -Maths 9th

Last Answer : This is the sketch of the question but its hard to answer.

Description : D, E and F are respectively the mid-points of the sides AB, BC and CA of a triangle ABC. -Maths 9th

Last Answer : Since the segment joining the mid points of any two sides of a triangle is half the third side and parallel to it. DE = 1 / 2 AC ⇒ DE = AF = CF EF = 1 / 2 AB ⇒ EF = AD = BD DF = 1 ... △DEF ≅ △AFD Thus, △DEF ≅ △CFE ≅ △BDE ≅ △AFD Hence, △ABC is divided into four congruent triangles.

Description : In the fig, D, E and F are, respectively the mid-points of sides BC, CA and AB of an equilateral triangle ABC. -Maths 9th

Last Answer : Since line segment joining the mid-points of two sides of a triangle is half of the third side. Therefore, D and E are mid-points of BC and AC respectively. ⇒ DE = 1 / 2 AB --- (i) E and F are the mid - ... CA ⇒ DE = EF = FD [using (i) , (ii) , (iii) ] Hence, DEF is an equilateral triangle .

Description : The median BE and CF of a triangle ABC intersect at G. -Maths 9th

Last Answer : According to question the area of ΔGBC = area of the quadrilateral AFGE.