If P(-l, 1), Q(3, -4), R(1, -1), S(-2, -3) and T(-4, 4) are plotted on the graph paper, then the point(s) in the fourth quadrant is/are -Maths 9th

1 Answer

Answer :

(b) In point P (-1, 1), x-coordinate is -1 unit and y-coordinate is 1 unit, so it lies in llnd quadrant. Similarly, we can plot all the points Q (3, -4), R (1, -1), S (-2, -3) and T (-4, 4), It is clear from the graph that points R and Q lie in fourth quadrant.

Related questions

Description : If P(-l, 1), Q(3, -4), R(1, -1), S(-2, -3) and T(-4, 4) are plotted on the graph paper, then the point(s) in the fourth quadrant is/are -Maths 9th

Last Answer : (b) In point P (-1, 1), x-coordinate is -1 unit and y-coordinate is 1 unit, so it lies in llnd quadrant. Similarly, we can plot all the points Q (3, -4), R (1, -1), S (-2, -3) and T (-4, 4), It is clear from the graph that points R and Q lie in fourth quadrant.

Description : If P (5,1), Q (8, 0), R(0, 4), S(0, 5) and O(0, 0) are plotted on the graph paper, then the points on the X-axis is/are -Maths 9th

Last Answer : (d) We know that, a point lies on X-axis, if its y-coordinate is zero. So, on plotting the given points on graph paper, we get Q and O lie on the X-axis.

Description : If P (5,1), Q (8, 0), R(0, 4), S(0, 5) and O(0, 0) are plotted on the graph paper, then the points on the X-axis is/are -Maths 9th

Last Answer : (d) We know that, a point lies on X-axis, if its y-coordinate is zero. So, on plotting the given points on graph paper, we get Q and O lie on the X-axis.

Description : Which of the points P(0, 3), Q(l, 0), R(0, – 1), S(-5, 0) and T(1, 2) do not lie on the X-axis ? -Maths 9th

Last Answer : (c) We know that, if a point is of the form (x, 0)i.e., its y-coordinate is zero, then it will lie on X-axis otherwise not. Here, y-coordinates of points P(0, 3), R (0, -1) and T (1,2) are not zero, so these points do not lie on the X-axis.

Description : Which of the points P(0, 3), Q(l, 0), R(0, – 1), S(-5, 0) and T(1, 2) do not lie on the X-axis ? -Maths 9th

Last Answer : (c) We know that, if a point is of the form (x, 0)i.e., its y-coordinate is zero, then it will lie on X-axis otherwise not. Here, y-coordinates of points P(0, 3), R (0, -1) and T (1,2) are not zero, so these points do not lie on the X-axis.

Description : Write the coordinates of each of the points P, Q, R, S, T and 0 from the figure . -Maths 9th

Last Answer : Here, points P and S lie in I quadrant so their both coordinates will be positive. Now, perpendicular distance of P from both axes is 1, so coordinates of P are (1, 1). Also, perpendicular distance of S ... 0 is the intersection of both axes, so it is the origin and its coordinates are O (0,0).

Description : Write the coordinates of each of the points P, Q, R, S, T and 0 from the figure . -Maths 9th

Last Answer : Here, points P and S lie in I quadrant so their both coordinates will be positive. Now, perpendicular distance of P from both axes is 1, so coordinates of P are (1, 1). Also, perpendicular distance of S ... 0 is the intersection of both axes, so it is the origin and its coordinates are O (0,0).

Description : P, Q, R, S and T are placed in the order of 1 to 5. S is at one of the extreme ends. Q and R are neighbors and T is 3rd to the right of P If R is in second position, then who will be in fourth position? a) T b) Q c) P d) S

Last Answer : Ans: option (a)

Description : If P,Q,R,S are respectively the mid - points of the sides of a parallelogram ABCD, if ar(||gm PQRS) = 32.5cm2 , then find ar(||gm ABCD). -Maths 9th

Last Answer : Join PR. ∵ △PSR and ||gm APRD are on the same base and between same parallel lines. ar(△PSR) = 1/2 ar(||gm APRD) Similarly, ar(△PQR) = 1/2 ar(||gm PBCR) ar(△PQRS) = ar(△PSR) + △(PQR) = 1/2 ar(||gm APRD) + 1 ... |gm PBCR) = 1/2 ar(||gm ABCD) ⇒ ar(||gm ABCD) = 2 ar(||gm PQRS) = 2 32.5 = 65cm2

Description : If P,Q,R,S are respectively the mid - points of the sides of a parallelogram ABCD, if ar(||gm PQRS) = 32.5cm2 , then find ar(||gm ABCD). -Maths 9th

Last Answer : Join PR. ∵ △PSR and ||gm APRD are on the same base and between same parallel lines. ar(△PSR) = 1/2 ar(||gm APRD) Similarly, ar(△PQR) = 1/2 ar(||gm PBCR) ar(△PQRS) = ar(△PSR) + △(PQR) = 1/2 ar(||gm APRD) + 1 ... |gm PBCR) = 1/2 ar(||gm ABCD) ⇒ ar(||gm ABCD) = 2 ar(||gm PQRS) = 2 32.5 = 65cm2

Description : If ABCD is a rectangle and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively, then quadrilateral PQRS is a rhombus. -Maths 9th

Last Answer : Here, we are joining A and C. In ΔABC P is the mid point of AB Q is the mid point of BC PQ∣∣AC [Line segments joining the mid points of two sides of a triangle is parallel to AC(third side) and ... RS=PS=RQ[All sides are equal] ∴ PQRS is a parallelogram with all sides equal ∴ So PQRS is a rhombus.

Description : ABCD is a trapezium in which AB || DC and AD = BC. If P, Q, R and S be respectively the mid-points of BA, BD, CD and CA, then PQRS is a -Maths 9th

Last Answer : Here is your First of all we will draw a quadrilateral ABCD with AD = BC and join AC, BD, P,Q,R,S are the mid points of AB, AC, CD and BD respectively. In the triangle ABC, P and Q are mid points of AB and AC respectively. All sides are equal so PQRS is a Rhombus.

Description : Let P(–3, 2), Q(–5, –5), R(2, –3) and S(4, 4) be four points in a plane. Then show that PQRS is a rhombus. Is it a square ? -Maths 9th

Last Answer : Let P(1, -1), Q \(\big(rac{-1}{2},rac{1}{2}\big)\) and R(1,2) be the vertices of the ΔPQR.Then, PQ = \(\sqrt{\big(rac{-1}{2}-1\big)^2+\big(rac{1}{2}+1\big)^2}\) = \(\sqrt{rac{9}{4}+rac{9}{4}} ... {3\sqrt2}{2}\)PR = \(\sqrt{(1-1)^2+(2+1)^2}\) = \(\sqrt9\) = 3∵ PQ = QR, the triangle PQR is isosceles.

Description : In trapezium ABCD, AB || DC and L is the mid-point of BC. Through L, a line PQ || AD has been drawn which meets AB in P and DC produced in Q. -Maths 9th

Last Answer : According to question prove that ar (ABCD) = ar (APQD).

Description : In trapezium ABCD, AB || DC and L is the mid-point of BC. Through L, a line PQ || AD has been drawn which meets AB in P and DC produced in Q. -Maths 9th

Last Answer : According to question prove that ar (ABCD) = ar (APQD).

Description : In which quadrant(s), the abscissa of a point is negative? -Maths 9th

Last Answer : Solution:- II and III quadrants

Description : The point in which abscissa and ordinate have different signs will lie in which quadrant (s)? -Maths 9th

Last Answer : Solution :- II and IV quadrants.

Description : If in coordinates of a point B(3, -2), signs of both coordinates are interchanged, then it will lie in which quadrant ? -Maths 9th

Last Answer : answer:

Description : P is the mid - point of side AB of a parallelogram ABCD. A line through B parallel to PD meets DC at Q and AD produced at R (see figure). -Maths 9th

Last Answer : (i) In △ARB,P is the mid point of AB and PD || BR. ∴ D is a mid - point of AR [converse of mid - point theorem] ∴ AR = 2AD But BC = AD [opp sides of ||gm ABCD] Thus, AR = 2BC (ii) ∴ ABCD is a ... a mid - point of AR and DQ || AB ∴ Q is a mid point of BR [converse of mid - point theorem] ⇒ BR = 2BQ

Description : Plot the points P(1, 0), Q(4, 0) and 5(1, 3). Find the coordinates of the point R such that PQRS is a square. -Maths 9th

Last Answer : see the below answer

Description : P is the mid - point of side AB of a parallelogram ABCD. A line through B parallel to PD meets DC at Q and AD produced at R (see figure). -Maths 9th

Last Answer : (i) In △ARB,P is the mid point of AB and PD || BR. ∴ D is a mid - point of AR [converse of mid - point theorem] ∴ AR = 2AD But BC = AD [opp sides of ||gm ABCD] Thus, AR = 2BC (ii) ∴ ABCD is a ... a mid - point of AR and DQ || AB ∴ Q is a mid point of BR [converse of mid - point theorem] ⇒ BR = 2BQ

Description : Plot the points P(1, 0), Q(4, 0) and 5(1, 3). Find the coordinates of the point R such that PQRS is a square. -Maths 9th

Last Answer : see the below answer

Description : 3. ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus. -Maths 9th

Last Answer : Solution: Given in the question, ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Construction, Join AC and BD. To Prove, PQRS is a rhombus. Proof: In ΔABC P and Q ... (ii), (iii), (iv) and (v), PQ = QR = SR = PS So, PQRS is a rhombus. Hence Proved

Description : 2. ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle. -Maths 9th

Last Answer : Solution: Given in the question, ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. To Prove, PQRS is a rectangle. Construction, Join AC and BD. Proof: In ΔDRS and ... , In PQRS, RS = PQ and RQ = SP from (i) and (ii) ∠Q = 90° , PQRS is a rectangle.

Description : ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see Fig 8.29). AC is a diagonal. Show that: (i) SR || AC and SR = 1/2 AC (ii) PQ = SR (iii) PQRS is a parallelogram. -Maths 9th

Last Answer : . Solution: (i) In ΔDAC, R is the mid point of DC and S is the mid point of DA. Thus by mid point theorem, SR || AC and SR = ½ AC (ii) In ΔBAC, P is the mid point of AB and Q is the mid point of BC. ... ----- from question (ii) ⇒ SR || PQ - from (i) and (ii) also, PQ = SR , PQRS is a parallelogram.

Description : P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. -Maths 9th

Last Answer : Given In a quadrilateral ABCD, P, Q, R and S are the mid-points of sides AB, BC, CD and DA, respectively. Also, AC = BD To prove PQRS is a rhombus.

Description : P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. -Maths 9th

Last Answer : Given In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Also, AC = BD and AC ⊥ BD. To prove PQRS is a square. Proof Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

Description : P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. -Maths 9th

Last Answer : Given In a quadrilateral ABCD, P, Q, R and S are the mid-points of sides AB, BC, CD and DA, respectively. Also, AC = BD To prove PQRS is a rhombus.

Description : P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. -Maths 9th

Last Answer : Given In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Also, AC = BD and AC ⊥ BD. To prove PQRS is a square. Proof Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

Description : ABCD is a parallelogram in which P and Q are the mid-points of opposite sides AB and CD (Fig. 8.48). If AQ intersects DP at S and BQ intersects CP at R, show that -Maths 9th

Last Answer : Solution :-

Description : ABCD is a rectangle and p q r s are the mid points of the side AB BC CD AND DA respectively. Show that the quadrilateral PQRS is a rhombus -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : ABCD is a square. P, Q, R, S are the mid-points of AB, BC, CD and DA respectively. By joining AR, BS, CP, DQ, we get a quadrilateral which is a -Maths 9th

Last Answer : According to the given statement, the figure will be a shown alongside; using mid-point theorem: In △ABC,PQ∥AC and PQ=21 AC .......(1) In △ADC,SR∥AC and SR=21 AC .... ... are perpendicular to each other) ∴PQ⊥QR(angle between two lines = angle between their parallels) Hence PQRS is a rectangle.

Description : ABCD is a rectangle formed by the points A(–1, –1), B(–1, 4), C(5, 4) and D(5, –1). P, Q, R and S are mid-points -Maths 9th

Last Answer : (b) RhombusAB = \(\sqrt{(3-1)^2+(5-1)^2}\) = \(\sqrt{4+16}\) = \(\sqrt{20}\) = \(2\sqrt5\)BC = \(\sqrt{(1-5)^2+(1-3)^2}\) = \(\sqrt{16+4}\) = \(\sqrt{20}\) = \(2\sqrt5\)CD = \ ... = \(6\sqrt2\)Now, AB = BC = CD = AD ⇒ All sides are equal Also, AC ≠ BD ⇒ Diagonals are not equal. ⇒ ABCD is a rhombus.

Description : Points P, Q, R and S divide a line segment joining A (2, 6) and B (7, -4) in five equal parts. Find the coordinates of P and R. -Maths 9th

Last Answer : this is the ans hope its clear

Description : If P, Q and R are the mid-points of the sides, BC, CA and AB of a triangle and AD is the perpendicular from A on BC, then prove that P, Q, R and D are concyclic. -Maths 9th

Last Answer : According to question prove that P, Q, R and D are concyclic.

Description : If P, Q and R are the mid-points of the sides, BC, CA and AB of a triangle and AD is the perpendicular from A on BC, then prove that P, Q, R and D are concyclic. -Maths 9th

Last Answer : According to question prove that P, Q, R and D are concyclic.

Description : If P, Q and R are three points on a line and Q is between P and R,then prove that PR - QR= PQ. -Maths 9th

Last Answer : Solution :-

Description : If a, b, c be the p^th, q^th, r^th terms of a GP, then the value of (q – r) log a + (r – p) -Maths 9th

Last Answer : (a) 0Let h be the first term and k be the common ratio of a GP, then a = hkp - 1, b = hkq - 1, c = hkr - 1∴ (q - r) log a + (r - p) log b + (p - q) log c = log [hkp -1]q - r + log [hkq -1]r - p + log[hkr -1]p - ... r + r - p + p - q) (kp - 1)q - r (kq -1)r - p (kr -1)p - q = log(ho ko) = log 1 = 0.

Description : For three distinct positive numbers p, q and r, if p + q + r = a, then -Maths 9th

Last Answer : answer:

Description : Draw a graph of the equation x + Y = 5 & 3x - 2y =0 on the same graph paper. Find the coordinates of the point whose two lines intersect. -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : Draw a graph of the equation x - Y = 4 & 2x+ 2y =4 on the same graph paper find the coordinates of the point whose two lines intersect. -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : Draw a graph of the equation x+ y=5 & 3x -2y=0 in the same graph paper find the coordinates of the point whose two two lines intersect. -Maths 9th

Last Answer : From x + y = 5, If x = 0 0 + y = 5 y = 5 Therefore (0,5) If x = 1 1 + y = 5 y =5 - 1 y = 4 Therefore (1,4) Draw a graph for this And From 3x - 2y = 0 If x = 0 3 (0) - 2y = 0 0 - ... 2y = 0 -2y = -6 y = -6/-2 y = 3 Therefore (2,3) Draw a graph for these points And the point of intersection is (2,3)

Description : When a graph is plotted between log x/m and log p, it is straight line with an angle `45^(@)` and intercept 0.3010 on y - axis. If initial pressure is

Last Answer : When a graph is plotted between log x/m and log p, it is straight line with an angle `45 ... adsorbent : (Report your answer after multiplying by 10)

Description : l, m and n are three parallel lines intersected by transversals p and q such that l, m and n cut off equal intercepts AB and BC on p (see figure). -Maths 9th

Last Answer : Though E, draw a line parallel to p intersecting L at G and n at H respectively. Since l | | m ⇒ AG | | BE and AB | | GE [by construction] ∴ Opposite sides of quadrilateral AGEB are ... ∠DGE = ∠FHE [alternate interior angles] By ASA congruence axiom, we have △DEG ≅ △FEH Hence, DE = EF

Description : l, m and n are three parallel lines intersected by transversals p and q such that l, m and n cut off equal intercepts AB and BC on p (see figure). -Maths 9th

Last Answer : Though E, draw a line parallel to p intersecting L at G and n at H respectively. Since l | | m ⇒ AG | | BE and AB | | GE [by construction] ∴ Opposite sides of quadrilateral AGEB are ... ∠DGE = ∠FHE [alternate interior angles] By ASA congruence axiom, we have △DEG ≅ △FEH Hence, DE = EF

Description : l,m and n are three parallel lines intersected by transversal p and q such that l,m and n cut-off equal intersepts AB and BC on p (Fig.8.55). Show that l,m and n cut - off equal intercepts DE and EF on q also. -Maths 9th

Last Answer : Given:l∥m∥n l,m and n cut off equal intercepts AB and BC on p So,AB=BC To prove:l,m and n cut off equal intercepts DE and EF on q i.e.,DE=EF Proof:In △ACF, B is the mid-point of ... a triangle, parallel to another side, bisects the third side. Since E is the mid-point of DF DE=EF Hence proved.

Description : Name the quadrant in which the point lies : -Maths 9th

Last Answer : (a) A (1, 1) lies in the 1st quadrant, (b) B (2, 4) lies in the 1st quadrant. (c) C (-3, -10) lies in the 3rd quadrant. (d) D (-1, 2) lies in the 2nd quadrant. (e) E (1 , -1) lies in the ... lies in the 3rd quadrant. (g) G (-3, 10) lies in the 2nd quadrant. (h) H (1, -2) lies in the 4th quadrant.

Description : Signs of the abscissa and ordinate of a point in the second quadrant are respectively. -Maths 9th

Last Answer : (C) In second quadrant, X-axis is negative and Y-axis is positive. So, sign of abscissa of a point is negative and sign of ordinate of a point is positive.

Description : Name the quadrant in which the point lies : -Maths 9th

Last Answer : (a) A (1, 1) lies in the 1st quadrant, (b) B (2, 4) lies in the 1st quadrant. (c) C (-3, -10) lies in the 3rd quadrant. (d) D (-1, 2) lies in the 2nd quadrant. (e) E (1 , -1) lies in the ... lies in the 3rd quadrant. (g) G (-3, 10) lies in the 2nd quadrant. (h) H (1, -2) lies in the 4th quadrant.

Description : Signs of the abscissa and ordinate of a point in the second quadrant are respectively. -Maths 9th

Last Answer : (C) In second quadrant, X-axis is negative and Y-axis is positive. So, sign of abscissa of a point is negative and sign of ordinate of a point is positive.