# Draw and explain the operation of following flip-flops,(i) SR flip-flops (ii) D-flip lops.

Draw and explain the operation of following flip-flops,(i) SR flip-flops (ii) D-flip lops.

SR Flip-Flop

 The SR flip-flop, also known as a SR Latch, can be considered as one of the most basic sequential logic circuit possible. This simple flip-flop is basically a one-bit memory bistable device that has two inputs, one which will “SET” the device (meaning the output = “1”), and is labelled S and another which will “RESET” the device (meaning the output = “0”), labelled R.  Then the SR description stands for “Set-Reset”. The reset input resets the flip-flop back to its original state with an output Q that will be either at a logic level “1” or logic “0” depending upon this set/reset condition.  A basic NAND gate SR flip-flop circuit provides feedback from both of its outputs back to its opposing inputs and is commonly used in memory circuits to store a single data bit. Then the SR flip-flop actually has three inputs, Set, Reset and its current output Q relating to it’s current state or history. The term “Flip-flop” relates to the actual operation of the device, as it can be “flipped” into one logic Set state or “flopped” back into the opposing logic Reset state.

The Basic SR Flip-flop The Set State

 Consider the circuit shown above. If the input R is at logic level “0” (R = 0) and input S is at logic level “1” (S = 1), the NAND gate Y has at least one of its inputs at logic “0” therefore, its output Q must be at a logic level “1” (NAND Gate principles). Output Q is also fed back to input “A” and so both inputs to NAND gate X are at logic level “1”, and therefore its output Q must be at logic level “0”.

Reset State

In this second stable state, Q is at logic level “0”, (not Q = “0”) its inverse output at Q is at logic level “1”, (Q = “1”), and is given by R = “1” and S = “0”. As gate X has one of its inputs at logic “0” its output Q must equal logic level “1” (again NAND gate principles). Output Q is fed back to input “B”, so both inputs to NAND gate Y are at logic “1”, therefore, Q = “0”. D-type Flip-Flop Circuit  A simple SR flip-flop requires two inputs, one to “SET” the output and one to “RESET” the output. By connecting an inverter (NOT gate) to the SR flip-flop we can “SET” and “RESET” the flip-flop using just one input as now the two input signals are complements of each other.  This complement avoids the ambiguity inherent in the SR latch when both inputs are LOW, since that state is no longer possible.  Thus this single input is called the “DATA” input. If this data input is held HIGH the flip flop would be “SET” and when it is LOW the flip flop would change and become “RESET”. However, this would be rather pointless since the output of the flip flop would always change on every pulse applied to this data input.  To avoid this an additional input called the “CLOCK” or “ENABLE” input is used to isolate the data input from the flip flop’s latching circuitry after the desired data has been stored. The effect is that D input condition is only copied to the output Q when the clock input is active. This then forms the basis of another sequential device called a D Flip Flop. ## Related questions

Draw a full adder circuit using logic gates.Explain with truth table.Give also the expression for sum and carry
Last Answer : Full Adder   This type of adder is a little more difficult to implement than a half-adder. The main difference between a half-adder and a full-adder is that the full-adder has three inputs and two outputs. The first two inputs ... : CARRY-OUT = A AND B OR Cin (A XOR B) = A.B + Cin (A ⊕ B) ... Define the logic operation of AND gate with Boolean equation.
Last Answer : Boolean Expression Q = A.B.C. Read as A AND B AND C gives Q. Because the Boolean expression for the logic AND function is defined as (.), which is a binary operation, AND gates can be cascaded together to form any number of individual inputs.... Define flip flop. What are the different types of flip flop?
Last Answer : The designing of the flip flop circuit can be done by using logic gates such as two NAND and NOR gates. Each flip flop consists of two inputs and two outputs, namely set and reset, Q and Q'. This kind of flip flop ... SR latch. TYPES:  RS flip-flop  JK flip-flop  D flip-flop  T flip-flop... With necessary diagrams describe the operation of a 4-bit binary, ripple counter.  