------------ are called cantilever laminated springs
(a) Semi-elliptical springs (b) quarter elliptical springs (c) both (a) and (b) (d) none  (Ans: b)

1 Answer

Answer :

(b) quarter elliptical springs

Related questions

Description : The laminated spring which is in common use, is of the type (a) full elliptic (b) semi elliptic (c)one quarter elliptic (d)three quarter elliptic

Last Answer : (b) semi elliptic

Description : The following is a type of leaf springs (a) three Quarter elliptic (b) semi elliptic (c) quarter elliptic (d) all of the above

Last Answer : (d) all of the above

Description : Laminated springs are used in (a) Watches (b) Sofas (c) Motorcycles (d) None

Last Answer : (d) None

Description : The laminated springs are given initial curvature (a) To have uniform strength (b) To make it more economical (c) So that plates may become flat, when subjected to design load (d) None of these

Last Answer : (c) So that plates may become

Description : Laminated springs are used in (a) Watches (b) Sofas (c) Motorcycles (d) None

Last Answer : (d) None

Description : The laminated springs are given initial curvature (a) To have uniform strength (b) To make it more economical (c) So that plates may become flat, when subjected to design load (d) None of these

Last Answer : (c) So that plates may become flat, when subjected to design load

Description : In case of a laminated spring, the load at which the plates become straight is called (a) working load (b) safe load (c) proof load (d) none

Last Answer : (c) proof load

Description : A cantilever is a beam whose (a) Both ends are supported either on rollers or hinges (b) One end is fixed and other end is free (c) Both ends are fixed (d) Whose both or one of the end has overhang

Last Answer : b) One end is fixed and other end is free

Description : When two helical springs of equal lengths are arranged to form a cluster spring, then a. Shear stress in each spring will be equal b. Load taken by each spring will be half the total load c. Only A is correct d. Both A and B is correct

Last Answer : d. Both A and B is correct

Description : Which type of springs have only active coils? a. Helical compression springs b. Helical tension springs c. Both a. and b. d. None of the above

Last Answer : b. Helical tension springs

Description : A long column with fixed ends can carry load as compared to cantilever column (a) 4 times (b) 8 times (c) 16 times (d) None

Last Answer : (c) 16 times

Description : If continuous beam is overhanging then overhanging acts as a a.propped cantilever b.cantilever c.supported cantilever d.extended supported beam

Last Answer : b.cantilever

Description : A cantilever of length 3m carries a uniformly distributed load of 15KN/m over a length of 2m from the free end.If I= 108 mm4 and E= 2×105 N/mm2,find the slope at the free end? a.0.00326 rad b.0.00578 rad c.0.00677 rad d.0.00786 rad

Last Answer : a.0.00326 rad

Description : A cantilever of length 3 m carries a uniformly distributed load over the entire length.If the deflection at the free end is 40 mm,find the slope at the free end. a.0.0115 rad b.0.01777 rad c.0.001566 rad d.0.00144 rad

Last Answer : b.0.01777 rad

Description : A cantilever of length 3 m carries two point loads of 2 KN at the free end and 4KN at a distance of 1m from the free end .What is the deflection at the free end? Take E= 2×105 N/mm2and I= 108 mm4. a.2.56 mm b.3.84 mm c.1.84 mm d.5.26mm

Last Answer : c.1.84 mm

Description : A cantilever of length 3m carries a point load of 60 KN at a distance of 2m from the fixed end.If E= 2×105 and I=108, what is the deflection at the free end?. a.7 mm b.14 mm c.26 mm d.52 mm.

Last Answer : b.14 mm

Description : A cantilever of length 2m carries a point load of 30KN at the free end.If I = 108 mm4 and E= 2×105 N/mm2. What is the slope of the cantilever at the free end? a.0.503 rad b.0.677 rad c. 0.003 rad d.0.008

Last Answer : c. 0.003 rad

Description : The slope at the free end of a cantilever of length 1m is 10 .If the cantilever carries a uniformly distributed load over the whole length ,then the deflection at the free end will be a.1cm b.1.309 cm c.2.618 cm. d.3.927cm.

Last Answer : b.1.309 cm

Description : .Maximum slope in a cantilever beam with a Moment M at the free end will be a. 3ML/EI. b.2ML/EI. C. ML/EI. d. None.

Last Answer : C. ML/EI.

Description : Maximum slope in a cantilever beam with UDL w over the entire length will be a. wl3/9EI b. wl3/6EI c. wl3/3EI d. None.

Last Answer : b. wl3/6EI

Description : Maximum slope in a cantilever beam with UDL w over the entire length will be a. At the free end. b. At the fixed end. c. At the centre d. None.

Last Answer : a. At the free end.

Description : Maximum deflection in a cantilever beam with UDL w over the entire length will be a. At the free end. b. At the fixed end. c. At the centre d. None.

Last Answer : a. At the free end.

Description : Maximum deflection in a cantilever beam with UDL w over the entire length will be a.wL4/4EI b.wL4/12EI C.wl4/ 8EI d.None.

Last Answer : C.wl4/ 8EI

Description : Maximum slope in a cantilever beam with W at the free end will be a.WL2/4EI b.WL2/8EI c.WL2/2EI d.None.

Last Answer : c.WL2/2EI

Description : Maximum slope in a cantilever beam with W at the free end will be a.at the free end. b. at the centre c.at the fixed end. d.None.

Last Answer : a.at the free end.

Description : Maximum deflection in a cantilever beam with W at the free end will be a. at the free end. b.at the fixed end. c.at the centre d.None.

Last Answer : a. at the free end.

Description : Maximum deflection in a cantilever beam with W at the free end will be a.WL3/6EI. b.WL3/2EI c.WL3/3EI d.None.

Last Answer : c.WL3/3EI

Description : In cantilever beam the slope and deflection at the free end is ---------. a.zero b.maximum c.minimum d.none of above.

Last Answer : b.maximum

Description : Maximum bending moment in a cantilever beam having a UDL over entire length will be (a) wL2/2 (b) wL2/4 (c) wL2/8 (d) None

Last Answer : a) wL2/2

Description : n case of a cantilever beam having concentrated loads, shear force variation will be (a) Linear (b) Parabolic (c) Cubic (d) None

Last Answer : (d) None

Description : In case of a cantilever beam having concentrated loads, shear force variation will be (a) Linear (b) Parabolic (c) Cubic (d) None

Last Answer : d) None

Description : In case of a cantilever beam having UDL, bending moment variation will be (a) Linear (b) Parabolic (c) Cubic (d) None

Last Answer : (b) Parabolic

Description : In case of a cantilever beam having concentrated loads, bending moment variation will be (a) Linear (b) Parabolic (c) Cubic (d) None

Last Answer : (a) Linear

Description : In case of a cantilever beam, shear force at the fixed end will be (a) Maximum (b) Minimum (c) Zero (d) None

Last Answer : (a) Maximum

Description : In case of a cantilever beam, bending moment at the fixed end will be (a) Maximum (b) Minimum (c) Zero (d) None

Last Answer : (a) Maximum

Description : In case of a cantilever beam, bending moment at the free end will be (a) Maximum (b) Minimum (c) Zero (d) None

Last Answer : c) Zero

Description : In a cantilever subjected to a combination of concentrated load, uniformly distributed load and uniformly varying load, Maximum bending moment is (a) Where shear force=0 (b) At the free end (c) At the fixed end (d) At the mid-point

Last Answer : (c) At the fixed end

Description : In a cantilever subjected to a concentrated load (W) at the free end and having length =l, Maximum bending moment is (a) Wl at the free end (b) Wl at the fixed end (c) Wl/2 at the fixed end (d) Wl at the free end

Last Answer : (b) Wl at the fixed end

Description : In a cantilever carrying a uniformly varying load starting from zero at the free end, the Bending moment diagram is (a) A horizontal line parallel to x-axis (b) A line inclined to x-axis (c) Follows a parabolic law (d) Follows a cubic law

Last Answer : (d) Follows a cubic law

Description : In a cantilever carrying a uniformly varying load starting from zero at the free end, the shear force diagram is (a) A horizontal line parallel to x-axis (b) A line inclined to x-axis (c) Follows a parabolic law (d) Follows a cubic law

Last Answer : (c) Follows a parabolic law

Description : Which of the following are statically determinate beams? (a) Only simply supported beams (b) Cantilever, overhanging and simply supported (c) Fixed beams (d) Continuous beams

Last Answer : (b) Cantilever, overhanging and simply supported

Description : The bending moment diagram for a cantilever with U.D.L. over the whole span will be (a) Triangle (b) Rectangle (c) Parabola (d) Ellipse

Last Answer : (c) Parabola

Description : A cantilever beam of span 3m carries a point load 100 N at the free end. The maximum B.M in the beam will be (a) 100 N-m (b) 300 N-m (c) 150 N-m (d) 600 N-m

Last Answer : (b) 300 N-m

Description : A cantilever beam of length of 2m carries a U.D.L. of 150 N/m over its whole span. The maximum shear force in the beam will be (a) 150 N (b) 300 N (c) 150 N-m (d) 600 N-m

Last Answer : (b) 300 N

Description : The Point of contraflexure occurs in case of (a) Cantilever beams (b) Simply supported beams (c) Over hanging beams (d) All types of beams

Last Answer : c) Over hanging beams

Description : The bending moment diagram for a cantilever with point load, at the free end will be (a) A triangle with max. height under free end (b) A triangle with max. height under fixed end (c) A parabolic curve (d) None of these

Last Answer : (b) A triangle with max. height under fixed end

Description : The bending moment at the fixed end of a cantilever beam is (a) Maximum (b) Minimum (c) Wl/2 (d) Wl

Last Answer : (a) Maximum

Description : The type of spring used to achieve greater load carrying capacity within given space is (a)spiral spring (b) springs in series (c)multi-leaf spring (d) concentric spring

Last Answer : (d) concentric spring

Description : In leaf springs the longest leaf is known as (a) Lower leaf (b) Master leaf (c) Upper leaf (d) None of these

Last Answer : (b) Master leaf

Description : A concentric spring consists of 2 sprigs of diameter 10mm and 4mm. The net force acting on the composite spring is 5000N. Find the force acting on each of the two springs. (a) 1232.2N and 3767.8N (b) 786.4N and 4213.6N (c) 689.7N and 4310.3N (d) 645.3N and 4354.7N

Last Answer : (c) 689.7N and 4310.3N