The number of degrees of freedom in simple spring mass system is
A. Zero
B. One
C. Two
D. Three

1 Answer

Answer :

B. One

Related questions

Description : The number of degrees of freedom of a simple pendulum is: (a) 0 (b) 1 (c) 2

Last Answer : (b) 1

Description : The number of degrees of freedom of a vibrating system depends on a. number of masses b. number of masses and degrees of freedom of each mass c. number of coordinates used to describe the position of each mass d. None of the above

Last Answer : b. number of masses and degrees of freedom of each mass

Description : Identify the given system [fixed--spring—mass—spring—mass—spring--fixed] A. Single Degree of Freedom System B. Several Degree of Freedom System C. Two Degree of Freedom System D. None

Last Answer : C. Two Degree of Freedom System

Description : A single degree of freedom spring-mass system is subjected to a harmonic force of constant amplitude. For an excitation frequency of √3k/m , the ratio of the amplitude of steady state response to the static deflection of the spring is __________ A. 0.2 B. 0.5 C. 0.8 D. None of the above

Last Answer : B. 0.5

Description : The relative amplitudes of different degrees of freedom in a two-degree-of-freedom system depend on the natural frequency.

Last Answer : True

Description : During free vibration, different degrees of freedom oscillate at different frequencies.

Last Answer : False

Description : During free vibration, different degrees of freedom oscillate with different phase angles.

Last Answer : False

Description : The mass, stiffness, and damping matrices of a two-degree-of-freedom system are symmetric.

Last Answer : True

Description : What is the effect on the undamped natural frequency of a single-degree-of-freedom system if the mass of the system is increased? A The frequency will increase B The frequency will stay the same C The frequency will decrease D None of these

Last Answer : C The frequency will decrease

Description : What is the effect on the undamped natural frequency of a single-degree-of- C freedom system if the mass of the system is increased? ( A ) The frequency will increase ( B ) The frequency will stay the same ( C ) The frequency will decrease ( D ) None of these

Last Answer : ( C ) The frequency will decrease

Description : What is the effect on the undamped natural frequency of a single-degree-of-freedom system if the mass of the system is increased? A) The frequency will increase (B) The frequency will stay the same (C) The frequency will decrease (D) None of these

Last Answer : (C) The frequency will decrease

Description : In a 2-mass 3 spring vibrating system the two masses each are of 9.8 kg coupling spring is having a stiffness of 3430 N/m whereas the other two springs have each a stiffness of 8820 N/m. The two natural frequencies in rad /sec are A) 10 & 20 B) 20 & 30 C) 30 & 40D) 40 & 50

Last Answer : C) 30 & 40

Description : If the spring mass system with m and spring stiffness k is taken to very high altitude, the natural frequency of longitudinal vibrations * 1 point (A) increases (B) decreases (C) remain unchanged (D) may increase or decrease depending upon the value of the mass

Last Answer : (C) remain unchanged

Description : The natural frequency of a spring-mass system on earth is ωn. The natural frequency of this system on the moon (g of moon = g of earth /6) is * 1 point (A) ωn (B) 0.408ωn (C) 0.204ωn (D) 0.167ωn

Last Answer : (A) ωn

Description : The static deflection of a spring under gravity, when a mass of 1 kg is suspended from it, is 1 mm. Assume the acceleration due to gravity g = 10 m/s^2. The natural frequency of this spring-mass system (in rad/s) is A 100 B 150 C 200 D 250

Last Answer : A 100

Description : A vehicle suspension system consists of a spring and a damper. Stiffness of spring is 3.5 KN/m and damping constant of damper is 400Ns/m. If mass is 50 kg, then damping factor is A 0.606 B 0.10 C 0.666 D 0.471

Last Answer : D 0.471

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? A 12.32 Hz B 4.10 Hz C 6.16 HzD None of the above

Last Answer : C 6.16 Hz

Description : In a spring-mass system, which of the following force is not considered? A Spring force B Damping force C Accelerating force D A and B

Last Answer : B Damping force

Description : A mass of 10 kg when suspended from a spring causes a static deflection of 0.01m. Find the spring stiffness for the same system. A 9810 N/m B 8910 N/m C 1098 N/m D 9801 N/m

Last Answer : A 9810 N/m

Description : While calculating the natural frequency of a spring-mass system, the effect of the mass of the spring is accounted for by adding X times its value to the mass, where X is A 1/2 B 1/3 C 1/4 D 3⁄4

Last Answer : B 1/3

Description : A vibrating system having mass 1kg, a spring of stiffness 1000N/m and damping factor of 0.632 and it is put to harmonic excitation of 10N. Find the amplitude at resonance. A 0.079 B 7.9C 0.056 D 0.00791

Last Answer : D 0.00791

Description : A spring mass system has time period of oscillation of 0.25 sec. What will be the natural frequency of the system? A 1 Hz B 2 rad sec C 4 rad/sec D 4 Hz

Last Answer : D 4 Hz

Description : A mass of 10 kg when suspended from a spring causes a static deflection of 0.01m. Find the spring stiffness for the same system. A 9810 N/m B 8910 N/m C 1098 N/m D 9801 N/m

Last Answer : D 9801 N/m

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 43200 N/m and mass of 12 kg. A 40.22 rad/sec B 40 Hz C 60 Hz D 60 rad/sec

Last Answer : D 60 rad/sec

Description : While calculating the natural frequency of a spring-mass system, the effect of the mass of the spring is accounted for by adding X times its value to the mass, where X is A. 1/2 B. 1/3 C. 1/4 D. 3/4

Last Answer : B. 1/3

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? A. 12.32 Hz B. 4.10 Hz C. 6.16 Hz D. None of the above

Last Answer : C. 6.16 Hz

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m B. 80 x 10 3 N-s/m C. 42 x 10 3 N-s/m D. None of the above

Last Answer : C. 42 x 10 3 N-s/m

Description : Calculate damped natural frequency, if a spring mass damper system is subjected to periodic disturbing force of 30 N. Damping coefficient is equal to 0.76 times of critical damping coefficient and undamped natural frequency is 5 rad/sec A. 3.99 rad/sec B. 2.13 rad/sec C. 4.12 rad/sec D. 3.24 rad/sec

Last Answer : D. 3.24 rad/sec

Description : A system has a mass of 0.5 kg and spring stiffness of 2452 N/m. Find the natural frequency of the system. A. 5.14 Hz B. 9.14 Hz C. 11.14 Hz D. 28.14 Hz

Last Answer : C. 11.14 Hz

Description : A vertical spring-mass system has a mass of 0.5 kg and an initial deflection of 0.2 cm. Find the spring stiffness. A. 345 N/m B. 245 N/m C. 3452 N/mD. 2452 N/m

Last Answer : D. 2452 N/m

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? A) 12.32 Hz B) 4.10 Hz C) 6.16 Hz D) None of the above

Last Answer : C) 6.16 Hz

Description : In a spring mass system of mass m and stiffness k, the end of the spring are securely fixed and mass is attached to intermediate point of spring. The natural frequency of longitudinal ... is attached decreases D) Decreases as the distance from the bottom end where mass is attached decreases

Last Answer : B) Is minimum when mass is attached to mid point of the spring

Description : If the spring mass system with m and spring stiffness k is taken to very high altitude , the natural frequency of longitudinal vibrations A) Increases B) Decreases C) Remain unchanged D) May be increase or decrease depending upon the value of the mass

Last Answer : C) Remain unchanged

Description : In the spring mass system if the mass of the system is doubled with spring stiffness halved, the natural frequency of longitudinal vibration A) Remained unchanged B) Is doubled C) Is halved D) Is quadruped

Last Answer : C) Is halved

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? C ( A )12.32 Hz (B) 4.10 Hz ( C )6.16 Hz (D)None of the above

Last Answer : ( C )6.16 Hz

Description : In a spring-mass system, which of the following force is not considered? B ( A ) Spring force ( B ) Damping force ( C ) Accelerating force ( D ) A and B

Last Answer : B ) Damping force

Description : A mass of 10 kg when suspended from a spring causes a static deflection of A 0.01m. Find the spring stiffness for the same system. (A) 9810 N/m (B) 8910 N/m (C)1098 N/m (D) 9801 N/m

Last Answer : A) 9810 N/m

Description : While calculating the natural frequency of a spring-mass system, the effect of the B mass of the spring is accounted for by adding X times its value to the mass, where X is (A) 1/2 (B) 1/3 (C) 1/4 (D) 3/4

Last Answer : (B) 1/3

Description : A 10 Kg mass suspended by spring of stiffness 1000 N/m. the natural frequency of the system after giving excitation will be A. 0 Hz B. 1.59 Hz C. 2 Hz D. 15.9 Hz

Last Answer : B. 1.59 Hz

Description : The equation of motion for spring mass system includes A. Inertia Force B. Spring Force C. Both D. Gravitational force

Last Answer : C. Both

Description : A vehicle suspension system consists of a spring and a damper. The stiffness of the spring is 3.6 kN/m and the damping constant of the damper is 400 Ns/m. If the mass is 50 kg, then the damping factor (d ) and damped natural ... , are a) 0.471 and 1.19 Hz b) 0.471 and 7.48 Hz c) 0.666 and 1.35 Hz

Last Answer : a) 0.471 and 1.19 Hz

Description : The natural frequency of a spring-mass system on earth is ω n . The natural frequency of this system on the moon (g moon = g earth /6) is a) ω n b) 0.408ω n c) 0.204ω n d) 0.167ω n

Last Answer : a) ω n

Description : While calculating the natural frequency of a spring-mass system, the effect of the mass of the spring is accounted for by adding X times its value to the mass, where X is a) 1/2 b) 1/3 c) 1/4 d) 3/4

Last Answer : b) 1/3

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m mass of 20 kg? a. 12.32 Hz b. 4.10 Hz c. 6.16 Hz d. None of the above

Last Answer : c. 6.16 Hz

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m b. 80 x 10 3 N-s/m c. 42 x 10 3 N-s/m d. None of the above

Last Answer : c. 42 x 10 3 N-s/m

Description : A spring-mass system has a natural frequency of 10 rad/sec. When the spring constant is reduced by 800 N/m, the frequency is altered by 45 percent. Find the mass and spring constant of the original system. a)11.47kg and 1147.95N/m b)8.95kg and 895.25N/m c) 7.265kg and 726.5N/m d)None

Last Answer : a)11.47kg and 1147.95N/m

Description : A system has a mass of 0.5 kg and spring stiffness of 2452 N/m. Find the natural frequency of the system. (A) 5.14 Hz (B) 9.14 Hz (C) 11.14 Hz (D) 28.14 Hz

Last Answer : (C) 11.14 Hz

Description : A vehicle suspension system consists of a spring and a damper. The stiffness of the spring is 3.6 kN/m and the damping constant of the damper is 400 Ns/m. If the mass is 50 kg, then the damping factor (d ) and damped natural ... .19 Hz b) 0.471 and 7.48 Hz c) 0.666 and 1.35 Hz d) 0.666 and 8.50 Hz

Last Answer : a) 0.471 and 1.19 Hz

Description : The natural frequency of a spring-mass system on earth is ω n . The natural frequency of this system on the moon (g moon = g earth /6) is a) ω n b) 0.408ω n c) 0.204ω n d) 0.167ω n

Last Answer : a) ω n

Description : While calculating the natural frequency of a spring-mass system, the effect of the mass of the spring is accounted for by adding X times its value to the mass, where X is a) 1/2 b) 1/3 c) 1/4 d) 3/4

Last Answer : b) 1/3