In the circuit shown in figure, the resistance R has a value that depends on the current. Specifically R is 20 `Omega` when `i` is zero and the amount

1 Answer

Answer :

In the circuit shown in figure, the resistance R has a value that depends on the current. Specifically R is 20 `Omega` ... A B. `10A` C. 20 A D. `5A`

Related questions

Description : In the circuit shown in figure : `R = 10 Omega , L = (sqrt(3))/(10) H, R_(2) = 20 Omega` and `C = (sqrt(3))/(2) mF`. Current in `L - R_(1)` circuit is

Last Answer : In the circuit shown in figure : `R = 10 Omega , L = (sqrt(3))/(10) H, R_(2) = 20 Omega` and `C = (sqrt(3)) ... ` B. `90^(@)` C. `180^(@)` D. `60^(@)`

Description : In the circuit shown in figure : `R = 10 Omega , L = (sqrt(3))/(10) H, R_(2) = 20 Omega` and `C = (sqrt(3))/(2) mF`. Current in `L - R_(1)` circuit is

Last Answer : In the circuit shown in figure : `R = 10 Omega , L = (sqrt(3))/(10) H, R_(2) = 20 Omega` and `C = (sqrt( ... 10 sqrt(2) A` C. `20 sqrt(2) A` D. `25 A`

Description : In the circuit shown in figure : `R = 10 Omega , L = (sqrt(3))/(10) H, R_(2) = 20 Omega` and `C = (sqrt(3))/(2) mF`. Current in `L - R_(1)` circuit is

Last Answer : In the circuit shown in figure : `R = 10 Omega , L = (sqrt(3))/(10) H, R_(2) = 20 Omega` and `C = (sqrt(3) ... 2) A` C. `5 sqrt(6) A` D. `5 sqrt(3) A`

Description : Six resistance each of value `r=5 Omega` are connected between points A, B and C as shown in figure. If `R_(1), R_(2)` and `R_(3)` are the net resista

Last Answer : Six resistance each of value `r=5 Omega` are connected between points A, B and C as shown in figure. If `R_(1), R_(2) ... 1:2:3` C. `5:4:3` D. `4:3:2`

Description : In the circuit shown the cells `A` and `B` have negligible resistance. For `V_(A) = 12 V, R_(1) = 500 Omega` and `R = 100 Omega`, the galvanometer `(G

Last Answer : In the circuit shown the cells `A` and `B` have negligible resistance. For `V_(A) = 12 V, R_(1) = 500 Omega` and ` ... A. 4 V B. 2 V C. 12 V D. 6 V

Description : Each resistor shown in the figure has a resistance of `10 Omega` and the battery has the emf 6 V. What will be the current supplied by the battery ?

Last Answer : Each resistor shown in the figure has a resistance of `10 Omega` and the battery has the emf 6 V. What will be the ... 2 A` C. `1.8 A` D. `0.3 A`

Description : If the 12 Ohm resistor draws a current of 1 A as shown in the figure, the value of resistance R is

Last Answer : If the 12 Ohm resistor draws a current of 1 A as shown in the figure, the value of resistance R is

Description : In the circuit diagram shown in Fig. 4.53, a voltmeter reads 30 V when connected across `400 Omega` resistance. Calculate what the same voltmeter read

Last Answer : In the circuit diagram shown in Fig. 4.53, a voltmeter reads 30 V when connected across `400 ... when it is connected across `300 Omega` resistance.

Description : Assertion : In the circuit shown in figure, battery is ideal. If a resistance `R_(0)` is cannected in parallel with R, then power across R will increa

Last Answer : Assertion : In the circuit shown in figure, battery is ideal. If a resistance `R_(0)` is cannected ... . D. If Assertion is false but Reason is true.

Description : In the circuit diagram shown in figure, potential difference across `3Omega` resistance is 20 V. Then, match the following two columns.

Last Answer : In the circuit diagram shown in figure, potential difference across `3Omega` resistance is 20 V. Then, match the following two columns.

Description : In the circuit shown in Fig. 4.63, the terminal voltage of the battery is 6.0 V. Find the current I through the `18 Omega` resistor.

Last Answer : In the circuit shown in Fig. 4.63, the terminal voltage of the battery is 6.0 V. Find the current I through the `18 Omega` resistor.

Description : Two resistances are connected in the two gaps of a meter bridge. The balance point is `20 cm` from the zero end. When a resistance `15 Omega` is conne

Last Answer : Two resistances are connected in the two gaps of a meter bridge. The balance point is `20 cm` from the zero end. ... the value. A. 3 B. 6 C. 9 D. 12

Description : In the circuit shown in figure switch S is closed at time t=0 At what time current through `3Omega` resistance and 1H inductor are equal?

Last Answer : In the circuit shown in figure switch S is closed at time t=0 At what time current through `3Omega` resistance and ... 5)/(3))` D. `Insqrt((8)/(3))`

Description : A `100 V` voltmeter of internal resistance `20 k Omega` in series with a high resistance `R` is connected to a `110 V` line. The voltmeter reads `5 V`

Last Answer : A `100 V` voltmeter of internal resistance `20 k Omega` in series with a high resistance `R` is ... B. `315kOmega` C. `420kOmega` D. `440kOmega`

Description : Which of the following statements concerning AC circuits is correct? A. The power factor of a resistive circuit is always zero. B. True power in an inductive circuit always equals apparent power. ... . D. Total opposition to the flow of alternating current depends upon the amount of reactive power.

Last Answer : Answer: C

Description : A galvanometer has a coil of resistance `100 Omega` and gives a full-scale deflection for `30 mA` current. If it is to work as a voltmeter of `30 V` r

Last Answer : A galvanometer has a coil of resistance `100 Omega` and gives a full-scale deflection for `30 mA` current. ... Omega` C. `1000 Omega` D. `1800 Omega`

Description : In the given circuit diagram if each resistance is of `10 Omega`, then the current in arm AD will be

Last Answer : In the given circuit diagram if each resistance is of `10 Omega`, then the current in arm AD will be A. `(i)/(5)` ... )` C. `(3i)/(5)` D. `(4i)/(5)`

Description : In the circuit shown here, what is the value of the unknown resistor R so that the total resistance of the circuit between points P and Q is also equa

Last Answer : In the circuit shown here, what is the value of the unknown resistor R so that the total resistance of the ... ` C. `sqrt(69)Omega` D. `10 Omega`

Description : The emf of a cell E is 15 V as shown in the figure with an internal resistance of `0.5Omega`. Then the value of the current drawn from the cell is

Last Answer : The emf of a cell E is 15 V as shown in the figure with an internal resistance of `0.5Omega`. Then the value of ... A. `3A` B. `2A` C. `5A` D. `1A`

Description : 4. A three-phase, four-wire system having \( 250 V \) line-to-neutral has the following loads connected between the respective lines and the neutral. Calculate the current in the neutral wire?\[Z_{R}=20 \angle 0^{\circ} ... Z_{Y}=20 \angle 35^{\circ} \Omega, Z_{B}=20 \angle-55^{\circ} \Omega\](10M)

Last Answer : 4. A three-phase, four-wire system having \( 250 V \) line-to-neutral has the following loads connected ... =20 \angle-55^{\circ} \Omega \] (10M)

Description : 4. A three-phase, four-wire system having \( 250 V \) line-to-neutral has the following loads connected between the respective lines and the neutral. Calculate the current in the neutral wire?\[Z_{R}=20 \angle 0^{\circ} ... Z_{Y}=20 \angle 35^{\circ} \Omega, Z_{B}=20 \angle-55^{\circ} \Omega\](10M)

Last Answer : 4. A three-phase, four-wire system having \( 250 V \) line-to-neutral has the following loads connected ... =20 \angle-55^{\circ} \Omega \] (10M)

Description : 4. A three-phase, four-wire system having \( 250 V \) line-to-neutral has the following loads connected between the respective lines and the neutral. Calculate the current in the neutral wire?\[Z_{R}=20 \angle 0^{\circ} ... Z_{Y}=20 \angle 35^{\circ} \Omega, Z_{B}=20 \angle-55^{\circ} \Omega\](10M)

Last Answer : 4. A three-phase, four-wire system having \( 250 V \) line-to-neutral has the following loads connected ... =20 \angle-55^{\circ} \Omega \] (10M)

Description : Consider the diagram shown below. A Voltmeter of resistance `150 Omega` is connected across A and B. The potential drop across B and C measured by vol

Last Answer : Consider the diagram shown below. A Voltmeter of resistance `150 Omega` is connected across A and B. The potential ... 29 B. 27 V C. 31 V D. 30 V

Description : A plantinum wire has resistance of `10 Omega` at `0^(@)C` and `20 Omega` at `273^(@)C`. Find the value of coefficient of resistance.

Last Answer : A plantinum wire has resistance of `10 Omega` at `0^(@)C` and `20 Omega` at `273^(@)C`. Find the value of coefficient of resistance.

Description : In given figure, the potentiometer wire AB has a resistance of `5 Omega` and length 10 m . The balancing length AM for the emf of 0.4 V is

Last Answer : In given figure, the potentiometer wire AB has a resistance of `5 Omega` and length 10 m . The balancing length AM for ... B. 4 m C. `0.8` m D. 8 m

Description : In the circuit shown in figure ammeter and voltmeter are ideal. If `E=4 V,R=9Omega` and `r=1Omega` then readings of ammeter and voltmeter are

Last Answer : In the circuit shown in figure ammeter and voltmeter are ideal. If `E=4 V,R=9Omega` and `r=1Omega` then readings of ... V C. 3 A, 4 V D. 4 A, 4 V

Description : For the circuit shown in figure, the Boolean expression for the output y in terms of inputs P, Q, R and S is

Last Answer : For the circuit shown in figure, the Boolean expression for the output y in terms of inputs P, Q, R and S is P+Q+R+S

Description : The value of current in the \( 6 \Omega \) resistance is:

Last Answer : The value of current in the \( 6 \Omega \) resistance is:

Description : For the circuit shown in figure given below, the equivalent resistance points A and B is

Last Answer : For the circuit shown in figure given below, the equivalent resistance points A and B is A. `10Omega` B. `5 Omega` C. `(10)/(3)Omega` D. `2Omega`

Description : The potential difference in volt across the resistance `R_(3)` in the circuit shown in figure, is `(R_(1)=15Omega,R_(2)=15Omega, R_(3)=30Omega, R_(4)=

Last Answer : The potential difference in volt across the resistance `R_(3)` in the circuit shown in figure, is `(R_(1)=15Omega,R_(2 ... 5 B. `7.5` C. 15 D. `12.5`

Description : In the circuit shown in figure switch S is closed at time t=0 Potential difference across `3Omega` resistance at time t is given by

Last Answer : In the circuit shown in figure switch S is closed at time t=0 Potential difference across `3Omega` resistance at time t ... 2t)` D. `18(1-e^(-t//9))`

Description : What effect does the internal resistance have on the rest of the circuit shown in figure 3-60?

Last Answer : Because of the 2-volt drop across the internal resistance, only 48 volts is available for the rest of the circuit.

Description : What is the total resistance of the circuit shown in figure 3- 60?

Last Answer : 25Ω

Description : What is the total resistance of the circuit shown in figure 3- 59? (Hint: Redraw the circuit to simplify and then use equivalent resistances to compute for RT.)

Last Answer : 4Ω

Description : Resistance between points A and B in the circuit shown in figure is a. 4 ohm b. 6ohm c. 10 ohm d. 8 ohm

Last Answer : c. 10 ohm

Description : A circuit is connected as shown in the figure with the switch S open. When the switch is closed, the total amount of charge that flows from Y to X is

Last Answer : C

Description : The potentiak difference across a 2H inductor as a function of time is shown in the figure. At time t=0, current is zero. Current versus time graph ac

Last Answer : The potentiak difference across a 2H inductor as a function of time is shown in the figure. At time t=0, ... across the inductor will be A. B. C. D.

Description : The potential difference across a `2 H` inductor as a function of time is shown in figure. At time `t=0`, current is zero Current `t = 2` second is

Last Answer : The potential difference across a `2 H` inductor as a function of time is shown in figure. At time `t=0`, current is ... B. `3 A` C. `4 A` D. `5 A`

Description : The resistance in the two arms of the meter bridge are `5 Omega` and `R Omega`, respectively. When the resistance `R` is shunted with an equal resista

Last Answer : The resistance in the two arms of the meter bridge are `5 Omega` and `R Omega`, respectively. When the ... 15 Omega` C. `20 Omega` D. `25 Omega`

Description : The equivalent resistance of two resistor connected in series is `6 Omega` and their equivalent resistance is `(4)/(3)Omega`. What are the values of r

Last Answer : The equivalent resistance of two resistor connected in series is `6 Omega` and their equivalent resistance is `(4 ... , 2 Omega` D. `6 Omega, 2 Omega`

Description : A potentiometer wire of length `100 cm` having a resistance of `10 Omega` is connected in series with a resistance `R` and a cell of emf `2V` of negli

Last Answer : A potentiometer wire of length `100 cm` having a resistance of `10 Omega` is connected in series with a ... Omega` C. `790 Omega` D. `840 Omega`

Description : A resistance R is to be measured using a meter bridge. Student chooses the standared resistance S to be `100 Omega`. He finds the null point at `l_(1)

Last Answer : A resistance R is to be measured using a meter bridge. Student chooses the standared resistance ... a more accurate measurement with a meter bridge

Description : When a resistance of 100`Omega` is connected in series with a galvanometer of resistance R, then its range is V. To double its range, a resistance of

Last Answer : When a resistance of 100`Omega` is connected in series with a galvanometer of resistance R, then its range ... 800`Omega` C. 900`Omega` D. 100`Omega`

Description : AB is a potentiometer wire of length 100 cm and its resistance is `10Omega`. It is connected in series with a resistance R = 40 `Omega` and a battery

Last Answer : AB is a potentiometer wire of length 100 cm and its resistance is `10Omega`. It is connected in series with a ... `1.6V` C. `0.08V` D. `0.16V`

Description : What is the direction of current through the load resistor in the circuit shown in the illustration? EL-0085 A. Always from point 'Z' to the grounded end. B. Always from the grounded end to ... on the instantaneous polarity at point 'W'. D. It cannot be determined without a directional ammeter.

Last Answer : Answer: B

Description : Given that resistivity of copper is `1.68xx10^(-8) Omega`m. Calculate the amount of copper required to draw a wire 10 km long having resistance of `10

Last Answer : Given that resistivity of copper is `1.68xx10^(-8) Omega`m. Calculate the amount of copper required to draw a ... copper is `8.9xx10^(3) kg m^(-3)`.

Description : A series circuit consisting of three resistors has a current of 3 amps. If R1 = 20 ohms, R2= 60 ohms, and R 3 = 80 ohms, what is the (a) total resistance and (b) source voltage of the circuit?

Last Answer : (a) 160 ohms. (b) 480 ohms

Description : An infinitely long conductor is bent into a circle as shown in figure. It carries a current I ampere and the radius of loop is R metre. The magnetic i

Last Answer : An infinitely long conductor is bent into a circle as shown in figure. It carries a current I ampere and the radius ... (0)I)/(8piR)(pi + 1)` D. zero

Description : Which of the following figure shown the magnetic flux denstiy b at a distance r from a long straight rod carrying a steady current I ?

Last Answer : Which of the following figure shown the magnetic flux denstiy b at a distance r from a long straight rod carrying a steady current I ? A. B. C. D.