It is impossible for any process to have as its sole result the transfer of heat from a cooler to a hotter body  a. Carnot’s statement  b. Clausius statement  c. Rankine statement  d. Gauss statement

1 Answer

Answer :

Clausius statement

Related questions

Description : What statement of the second law of thermodynamics states that it is impossible to build a device that operates in a cycle and produces no effect other than the transfer of heat from a lower- ... A. Kelvin-Planck statement  B. Clausius statement  C. Kelvin statement  D. Rankine statement

Last Answer : Clausius statement

Description : Who coined the word “energy” in 1807?  A. William Rankine  B. Rudolph Clausius  C. Kelvin  D. Thomas Young

Last Answer : Thomas Young

Description : The term “thermodynamics” was first used in 1849 in the publication of a  A. Rudolph Clausius  B. William Rankine  C. Kelvin  D. Thomas Savery

Last Answer : Kelvin

Description : Compressed air coming out from a punctured football  (a) becomes hotter  (b) becomes cooler1  (c) remains at the same temperature  (d) may become hotter or cooler depend-ing upon the humidity of the surround¬ing air  (e) attains atmospheric temperature.

Last Answer : (b) becomes cooler1

Description : Which statement of the second law of thermodynamics states that no heat engine can have a thermal efficiency of 100 percent?  A. Kelvin-Planck statement  B. Clausius statement  C. Kevin statement  D. Rankine statement

Last Answer : Kelvin-Planck statement

Description : The statement “heat cannot by itself flow from one body into a hotter body” is governed by _________.  a. the first law of thermodynamics  b. the second law of thermodynamics  c. the third law of thermodynamics  d. the zeroth law of thermodynamics

Last Answer : the second law of thermodynamics

Description : The theory that heat consisted of a fluid, which could be transferred from one body to another, but not “created” or “destroyed”.  a. Clausius Theorem  b. Caloric Theory  c. Joules Law  d. Newton’s Law of cooling

Last Answer : Caloric Theory

Description : What law states that it is impossible to build a device that operates in a cycle and produces no effect other than the transfer of heat from a lowertemperature body to a highertemperature body?  A. ... B. First law of thermodynamics  C. Second law of thermodynamics  D. Third law of thermodynamics

Last Answer : Second law of thermodynamics

Description : The thermodynamic difference between a Rankine cycle working with saturated steam and the Carnot cycle is that  (a) carnot cycle can't work with saturated steam  (b) heat is supplied to water at temperature ... heat at two places  (d) rankine cycle is hypothetical  (e) none of the above.

Last Answer : Answer : b

Description : Who coined the word Entropy?  a. Rudolf Clausius  b. Kelvin  c. Gabriel Volks  d. Rudolf Diesel

Last Answer : Rudolf Clausius

Description : In thermodynamics, a throttling process, also called a _________, is a type of isenthalpic process where a liquid or gas is cooled as it passes from a higher pressure state to a lower pressure state.  a. Rankine Process  b. Carnot Cycle  c. Joule-Thomson process  d. Refrigeration process

Last Answer : Joule-Thomson process

Description : A temperature scale whose zero point is absolute zero, the temperature of “0” entropy at which all molecular motion stops.  a. Celsius  b. Fahrenheit  c. Kelvin  d. Rankine

Last Answer : Kelvin

Description : Which of the following is used in thermal power plant?  a. Brayton cycle  b. Reversed carnot cycle  c. Rankine cycle  d. Otto cycle

Last Answer : Rankine cycle

Description : Which of the following best describes both Stirling and Ericson engines?  a. Internal combustion engine  b. External combustion engine  c. Diesel cycle  d. Rankine cycle

Last Answer : External combustion engine

Description : Which of the following cycle is used in vapor cycle power plant?  a. Brayton cycle  b. Diesel cycle  c. Ericson cycle  d. Rankine cycle

Last Answer : Rankine cycle

Description : What is the Si unit for temperature?  a. Kelvin  b. Celsius  c. Fahrenheit  d. Rankine

Last Answer : Kelvin

Description : What is defined as the ratio of the change in temperature to the change in pressure when a real gas is throttled?  A. Rankine coefficient  B. Kelvin coefficient  C. Maxwell-Boltzmann coefficient  D. Joule-Thomson coefficient

Last Answer : Joule-Thomson coefficient

Description : What is the thermodynamic temperature scale in the English system?  A. Kelvin scale  B. Celsius scale  C. Fahrenheit scale  D. Rankine scale

Last Answer : Rankine scale

Description : What is the thermodynamic temperature scale in the SI system?  A. Kelvin scale  B. Celsius scale  C. Fahrenheit scale  D. Rankine scale

Last Answer : Kelvin scale

Description : Which of the following cycles has maximum efficiency  (a) Rankine  (b) Stirling  (c) Carnot  (d) Brayton  (e) Joule.

Last Answer : Answer : c

Description : Reversed joule cycle is called  (a) Carnot cycle  (b) Rankine cycle  (c) Brayton cycle  (d) Bell Coleman cycle  (e) Dual cycle.

Last Answer : Answer : c

Description : Thermal power plant works on  (a) Carnot cycle  (b) Joule cycle  (d) Rankine cycle  (d) Otto cycle  (e) Brayton cycle.

Last Answer : Answer : c

Description : The unit of temperature in S.I. units is  (a) Centigrade  (b) Celsius  (c) Fahrenheit  (d) Kelvin  (e) Rankine.

Last Answer : Answer : d

Description : If a system after undergoing a series of processes, returns to the initial state then  (a) process is thermodynamically in equilibrium  (b) process is executed in closed system cycle  (c) its entropy will ... sum of heat and work transfer will be zero  (e) no work will be done by the system.

Last Answer : Answer : d

Description : Which of the following occurs in a reversible polytrophic process?  a. Enthalpy remains constant  b. Internal energy does not change  c. Some heat transfer occurs  d. Entropy remains constant

Last Answer : Some heat transfer occurs

Description : When the expansion of compression of gas takes place without transfer of heat to or from the gas the process is called  a. reversible  b. adiabatic  c. polytropic  d. isothermal

Last Answer : adiabatic

Description : When the expansion of compression of gas takes place without transfer of heat or from the gas the process is called;  a. Isometric process  b. Isothermal process  c. Isobaric process  d. Adiabatic process

Last Answer : Adiabatic process

Description : The process that has no heat transfer  a. Density  b. Isentropic Process  c. Isometric Process  d. Adiabatic

Last Answer : Adiabatic

Description : How does an adiabatic process compare to an isentropic process?  A. Adiabatic heat transfer is not equal to zero; isentropic heat transfer is zero  B. Both heat transfer = 0; isentropic: reversible  ... is not equal to zero  D. Both heat transfer is not equal to zero; isentropic: irreversible

Last Answer : Both heat transfer = 0; isentropic: reversible

Description : In a free expansion process  (a) work done is zero  (b) heat transfer is zero  (c) both (a) and (b) above  (d) work done is zero but heat increases  (e) work done is zero but heat decreases.

Last Answer : Answer : c

Description : It is generally accepted as a law of nature that although one may closely approach 0 Kelvin it is impossible actually to reach it.  a. First Law of thermodynamics  b. Second Law of thermodynamics  c. Third Law of thermodynamics  d. Zeroth Law of thermodynamics

Last Answer : Third Law of thermodynamics

Description : An actual engine is to be designed having same efficiency as the Carnot cycle. Such a proposition is  (a) feasible  (b) impossible  (c) possible  (d) possible, but with lot of sophistications  (e) desirable.

Last Answer : Answer : d

Description : The entropy change of a system during a process is equal to the net entropy transfer through the system boundary and the entropy generated within the system . This statement is known as:  A. Entropy ...  B. Entropy change of a system  C. Entropy balance relation  D. Third law of thermodynamics

Last Answer : Entropy balance relation

Description : Which of the following represents the perpetual motion of the first kind  (a) engine with 100% thermal efficiency  (b) a fully reversible engine  (c) transfer of heat energy from low ... its own energy  (e) production of energy by temperature differential in sea water at different levels.

Last Answer : Answer : d

Description : An ideal gas is compressed in a cylinder so well insulated that there is essentially no heat transfer. The temperature of gas  a. Remains constant  b. increases  c. decreases  d. is basically zero

Last Answer : increases

Description : Which of the following best describes heat?  a. The capacity to do work  b. Forces times distances  c. Sum of thermal and chemical energy  d. An energy transfer due to temperature difference

Last Answer : An energy transfer due to temperature difference

Description : The first law of thermodynamics may be expressed in the following equivalent  a. the net heat transfer id equal to the network  b. the sum of the total energy forms leaving the system boundary is ... neither be created nor destroyed but only converted from one form to another  d. all of the above

Last Answer : all of the above

Description : The flow of a fluid when heat is transferred by convection.  a. placidity  b. mass flow  c. convection current  d. heat transfer

Last Answer : convection current

Description : The term “adiabatic” comes from Greek “adiabatos” which means ______.  A. No heat  B. No transfer  C. Not to be passed  D. No transformation

Last Answer : Not to be passed

Description : What is an energy that can be transferred from one object to another causing a change in temperature of each object?  A. Power  B. Heat transfer  C. Heat  D. Work

Last Answer : Heat

Description : What are the only two forms of energy interactions associated with a closed system?  A. Kinetic energy and heat  B. Heat transfer and work  C. Thermal energy and chemical energy  D. Latent energy and thermal energy

Last Answer : Heat transfer and work

Description : The term “thermodynamics” comes from Greek words “therme” and “dynamis” which means _______.  A. Heat power  B. Heat transfer  C. Heat energy  D. Heat motion

Last Answer : Heat power

Description : Entropy change depends on  (a) heat transfer  (b) mass transfer  (c) change of temperature  (d) thermodynamic state  (e) change of pressure and volume.

Last Answer : Answer : a

Description : What law states that it is impossible to operate an engine operating in a cycle that will have no other effect than to extract heat from a reservoir and turn it into an equivalent amount of work? ...  B. First law of thermodynamics  C. Second law of thermodynamics  D. Third law of thermodynamics

Last Answer : Second law of thermodynamics

Description : The radiation emitted by a body as a result of its temperature.  a. Blackbody Radiation  b. Thermal Inversion  c. Thermionic Inversion  d. Thermal Radiation

Last Answer : Thermal Radiation

Description : What states that the net mass transfer to or from a system during a process is equal to the net change in the total mass of the system during that process?  A. Third law of thermodynamics  B. Conservation of energy principle  C. Second law of thermodynamic  D. Conservation of mass principle

Last Answer : Conservation of mass principle

Description : Which is NOT a correct statement?  A. A superheated vapor will not condense when small amount of heat re removed  B. An ideal gas is a gas that is not a superheated vapor  C. A saturated ... absorb as much heat as it can without vaporizing  D. Water at 1 atm and room temperature is subcooled

Last Answer : An ideal gas is a gas that is not a superheated vapor

Description : Which is the incorrect statement about Carnot cycle?  A. It is used as the alternate standard of comparison of all heat engines.  B. All the heat engines are based on Carnot cycle.  C. It provides concept of maximising work output between the two temperature limits.  D. all of the above

Last Answer : Answer: B