Gauss law for electric field uses surface integral. State True/False
a) True
b) False

1 Answer

Answer :

a) True

Related questions

Description : In the conversion of line integral of H into surface integral, which theorem is used? a) Green theorem b) Gauss theorem c) Stokes theore d) It cannot be converted

Last Answer : c) Stokes theorem

Description : The Gauss divergence theorem converts a) line to surface integral b) line to volume integral c) surface to line integral d) surface to volume integral

Last Answer : d) surface to volume integral

Description : Which of the following theorem convert line integral to surface integral? a) Gauss divergence and Stoke’s theorem b) Stoke’s theorem only c) Green’ s theorem only d) Stoke’s and Green’s theorem

Last Answer : d) Stoke’s and Green’s theorem

Description : Poisson equation can be derived from which of the following equations? a) Point form of Gauss law b) Integral form of Gauss law c) Point form of Ampere law d) Integral form of Ampere law

Last Answer : a) Point form of Gauss law

Description : Gauss law cannot be expressed in which of the following forms? a) Differential b) Integral c) Point d) Stokes theorem

Last Answer : d) Stokes theorem

Description : Compute the Gauss law for D = 10ρ 3 /4 i, in cylindrical coordinates with ρ = 4m, z = 0 and z = 5, hence find charge using volume integral. a) 6100 π b) 6200 π c) 6300 π d) 6400 π View Answe

Last Answer : d) 6400 π

Description : Evaluate Gauss law for D = 5r 2 /4 i in spherical coordinates with r = 4m and θ = π/2 as volume integral. a) 600 b) 588.9 c) 577.8 d) 599.7

Last Answer : b) 588.9

Description : Biot Savart law in magnetic field is analogous to which law in electric field? a) Gauss law b) Faraday law c) Coulomb’s law d) Ampere law

Last Answer : c) Coulomb’s law

Description : Gauss law cannot be used to find which of the following quantity? a) Electric field intensity b) Electric flux density c) Charge d) Permittivity

Last Answer : d) Permittivity

Description : Which of the following correctly states Gauss law? a) Electric flux is equal to charge b) Electric flux per unit volume is equal to charge c) Electric field is equal to charge density d) Electric flux per unit volume is equal to volume charge density

Last Answer : d) Electric flux per unit volume is equal to volume charge density

Description : Gauss law can be used to compute which of the following? a) Permittivity b) Permeability c) Radius of Gaussian surface d) Electric potential

Last Answer : c) Radius of Gaussian surface

Description : The point form of Gauss law is given by, Div(V) = ρv State True/False. a) True b) False

Last Answer : a) True

Description : Coulomb’s law can be derived from Gauss law. State True/ False a) True b) False

Last Answer : a) True

Description : The work-electric field relation is given by a) Volume integral b) Surface integral c) Line integral d) Relation impossible

Last Answer : c) Line integral

Description : The integral form of potential and field relation is given by line integral. State True/False a) True b) False

Last Answer : a) True

Description : The Gauss law for magnetic field is valid in a) Air b) Conductor c) Dielectric d) All cases

Last Answer : d) All cases

Description : Gauss law can be evaluated in which coordinate system? a) Cartesian b) Cylinder c) Spherical d) Depends on the Gaussian surface

Last Answer : d) Depends on the Gaussian surface

Description : The line integral of the electric field intensity is a) Mmf b) Emf c) Electric potential d) Magnetic potential

Last Answer : b) Emf

Description : For a solenoidal field, the surface integral of D will be, a) 0 b) 1 c) 2 d) 3

Last Answer : a) 0

Description : The volume integral is three dimensional. State True/False a) True b) False

Last Answer : a) True

Description : The triple integral is used to compute volume. State True/False a) True b) False

Last Answer : a) True

Description : Gauss theorem uses which of the following operations? a) Gradient b) Curl c) Divergence d) Laplacian

Last Answer : c) Divergence

Description : Which one of the following laws will not contribute to the Maxwell’s equations? a) Gauss law b) Faraday law c) Ampere law d) Curie Weiss law

Last Answer : d) Curie Weiss law

Description : The Gauss law employs which theorem for the calculation of charge density? a) Green theorem b) Stokes theorem c) Gauss theorem d) Maxwell equation

Last Answer : c) Gauss theorem

Description : The Ampere law is based on which theorem? a) Green’s theorem b) Gauss divergence theorem c) Stoke’s theorem d) Maxwell theorem

Last Answer : c) Stoke’s theorem

Description : The continuity equation is a combination of which of the two laws? a) Ohm’s law and Gauss law b) Ampere law and Gauss law c) Ohm’s law and Ampere law d) Maxwell law and Ampere law

Last Answer : b) Ampere law and Gauss law

Description : With Gauss law as reference which of the following law can be derived? a) Ampere law b) Faraday’s law c) Coulomb’s law d) Ohm’s law

Last Answer : c) Coulomb’s law

Description : It cannot be determined from Gauss law, whereas the remaining options can be computed from Gauss law. 10. Gauss law for magnetic fields is given by a) Div(E) = 0 b) Div(B) = 0 c) Div(H) = 0 d) Div(D) = 0

Last Answer : b) Div(B) = 0

Description : Divergence theorem is based on a) Gauss law b) Stoke’s law c) Ampere law d) Lenz law

Last Answer : a) Gauss law

Description : The Coulomb law is an implication of which law? a) Ampere law b) Gauss law c) Biot Savart law d) Lenz law

Last Answer : b) Gauss law

Description : Compute the Gauss law for D= 10ρ 3 /4 i, in cylindrical coordinates with ρ= 4m, z=0 and z=5. a) 6100 π b) 6200 π c) 6300 π d) 6400 π

Last Answer : d) 6400 π

Description : Evaluate Gauss law for D = 5r 2 /4 i in spherical coordinates with r = 4m and θ = π/2. a) 600 b) 599.8 c) 588.9 d) 577.8

Last Answer : c) 588.9

Description : In P polarisation, the electric field lies in the same plane as the interface. State True/False. a) True b) False

Last Answer : a) True

Description : In S polarisation, the electric field lies in the plane perpendicular to that of the interface. State True/False a) True b) False

Last Answer : a) True

Description : The electric and magnetic field components in the electromagnetic wave propagation are in phase. State True/False. a) True b) False

Last Answer : a) True

Description : Electric field will be maximum outside the conductor and magnetic field will be maximum inside the conductor. State True/False. a) True b) False

Last Answer : a) True

Description : The time varying electric field E is conservative. State True/False. a) True b) False

Last Answer : b) False

Description : Dielectric property impacts the behaviour of a material in the presence of electric field. State True/False. a) True b) False

Last Answer : a) True

Description : Under the influence of electric field, the dielectric materials will get charged instantaneously. State True/False. a) True b) False

Last Answer : a) True

Description : If potential V = 20/(x 2 + y 2 ). The electric field intensity for V is 40(x i + y j)/(x 2 + y 2 ) 2 . State True/False. a) True b) False

Last Answer : a) True

Description : The electric field intensity is the negative gradient of the electric potential. State True/False. a) True b) False

Last Answer : a) True

Description : The tangential component of electric field intensity is always continuous at the interface. State True/False. a) True b) False

Last Answer : a) True

Description : Potential difference is the work done in moving a unit positive charge from one point to another in an electric field. State True/False. a) True b) False

Last Answer : a) True

Description : Electric field of an infinitely long conductor of charge density λ, is given by E = λ/(2πεh).aN. State True/False. a) True b) False

Last Answer : a) True

Description : According to Gauss' Law, the magnitude of the electric field is zero everywhere inside a conductor if: w) electrostatic equilibrium is achieved x) the surface is a metal y) the conductor is moving z) the conductor is a non-Gaussian surface

Last Answer : ANSWER: W -- ELECTROSTATIC EQUILIBRIUM IS ACHIEVED

Description : The law that relates the electric field at the surface of a region to the amount of charge inside the region is called: w) Coulomb's Law x) Faraday's Law y) Gauss' Law z) Biot-Savart Law

Last Answer : ANSWER: Y -- GAUSS' LAW

Description : The line integral of the magnetic field intensity is the a) Current density b) Current c) Magnetic flux density d) Magnetic moment

Last Answer : b) Current

Description : The surface integral of which parameter is zero? a) E b) D c) B d) H

Last Answer : c) B

Description : Which equation will hold good for a magnetic material? a) Line integral of H is zero b) Surface integral of H is zero c) Line integral of B is zero d) Surface integral of B is zero

Last Answer : d) Surface integral of B is zero

Description : Evaluate the surface integral ∫∫ (3x i + 2y j). dS, where S is the sphere given by x 2 + y 2 + z 2 = 9. a) 120π b) 180π c) 240π d) 300π

Last Answer : b) 180π