Find the magnetic flux density when the vector potential is a position vector.
a) 1
b) 0
c) -1
d) ∞

1 Answer

Answer :

b) 0

Related questions

Description : Find the magnetic flux density of the material with magnetic vector potential A = y i + z j + x k. a) i + j + k b) –i – j – k c) –i-j d) –i-k

Last Answer : b) –i – j – k

Description : The charge density of a field with a position vector as electric flux density is given by a) 0 b) 1 c) 2 d) 3

Last Answer : d) 3

Description : The charge density of a system with the position vector as electric flux density is a) 0 b) 1 c) 2 d) 3

Last Answer : d) 3

Description : The relation between flux density and vector potential is a) B = Curl(A) b) A = Curl(B) c) B = Div(A) d) A = Div(B)

Last Answer : a) B = Curl(A)

Description : Find the magnetic field when the magnetic vector potential is a unit vector. a) 1 b) -1 c) 0 d) 2

Last Answer : c) 0

Description : Find the magnetic field intensity when the magnetic vector potential x i + 2y j + 3z k. a) 6 b) -6 c) 0 d) 1

Last Answer : b) -6

Description : Find the total flux in a coil of magnetic flux density 12 units and area 7 units. a) 0.84 b) 0.96 c) 8.4 d) 9.6

Last Answer : a) 0.84

Description : Find the magnetic flux density when a point from a finite current length element of current 0.5A and radius 100nm. a) 0 b) 0.5 c) 1 d) 2

Last Answer : c) 1

Description : Find the force on a conductor of length 12m and magnetic flux density 20 units when a current of 0.5A is flowing through it. a) 60 b) 120 c) 180 d) 200

Last Answer : b) 120

Description : Which of the following is a vector quantity ? (a) Relative permeability (b) Magnetic field intensity (c) Flux density (d) Magnetic potential

Last Answer : (b) Magnetic field intensity

Description : The potential due to the dipole on the midpoint of the two charges will be a) 0 b) Unity c) ∞ d) -∞

Last Answer : a) 0

Description : Find the potential due the dipole when the angle subtended by the two charges at the point P is perpendicular. a) 0 b) Unity c) ∞ d) -∞

Last Answer : a) 0

Description : The potential in a lamellar field is a) 1 b) 0 c) -1 d) ∞

Last Answer : b) 0

Description : Find the flux density B when the potential is given by x i + y j + z k in air. a) 12π x 10 -7 b) -12π x 10 -7 c) 6π x 10 -7 d) -6π x 10 -7

Last Answer : b) -12π x 10 -7

Description : If the electric potential is given, which of the following cannot be calculated? a) Electrostatic energy b) Electric field intensity c) Electric flux density d) Permittivity

Last Answer : a) Electrostatic energy

Description : The ultimate result of the divergence theorem evaluates which one of the following? a) Field intensity b) Field density c) Potential d) Charge and flux

Last Answer : d) Charge and flux

Description : When the rotational path of the magnetic field intensity is zero, then the current in the path will be a) 1 b) 0 c) ∞ d) 0.5

Last Answer : b) 0

Description : Find the magnetic field when a circular conductor of very high radius is subjected to a current of 12A and the point P is at the centre of the conductor. a) 1 b) ∞ c) 0 d) -∞

Last Answer : c) 0

Description : The gradient of the magnetic vector potential can be expressed as a) –με dV/dt b) +με dE/dt c) –με dA/dt d) +με dB/dt

Last Answer : a) –με dV/dt

Description : The current element of the magnetic vector potential for a surface current will be a) J dS b) I dL c) K dS d) J dV

Last Answer : c) K dS

Description : The magnetic vector potential for a line current will be inversely proportional to a) dL b) I c) J d) R

Last Answer : d) R

Description : The Laplacian of the magnetic vector potential will be a) –μ J b) – μ I c) –μ B d) –μ H

Last Answer : a) –μ J

Description : The magnetic vector potential is a scalar quantity. a) True b) False

Last Answer : b) False

Description : At dc field, the displacement current density will be a) 0 b) 1 c) Jc d) ∞

Last Answer : a) 0

Description : Which quantity is solenoidal in the electromagnetic theory? a) Electric field intensity b) Electric flux density c) Magnetic field intensit d) Magnetic flux density

Last Answer : d) Magnetic flux density

Description : The line integral of the magnetic field intensity is the a) Current density b) Current c) Magnetic flux density d) Magnetic moment

Last Answer : b) Current

Description : Find the Lorentz force due to a conductor of length 2m carrying a current of 1.5A and magnetic flux density of 12 units. a) 24 b) 36 c) 32 d) 45

Last Answer : c) 32

Description : Calculate the Larmer angular frequency for a magnetic flux density of 12.34 x 10 -10 . a) 108.36 b) 810.63 c) 368.81 d) 183.36

Last Answer : a) 108.36

Description : The magnetization is defined by the ratio of a) Magnetic moment to area b) Magnetic moment to volume c) Magnetic flux density to area d) Magnetic flux density to volume

Last Answer : b) Magnetic moment to volume

Description : Find the torque of a loop with magnetic moment 12.5 and magnetic flux density 7.65 units is a) 95.625 b) 65.925 c) 56.525 d) 65.235

Last Answer : a) 95.625

Description : Find the magnetic force when a charge 3.5C with flux density of 4 units is having a velocity of 2m/s. a) 14 b) 28 c) 7 d) 32

Last Answer : b) 28

Description : Find the magnetic field intensity of a material with flux density of 24 units in air(in 10 6 order) a) 19.09 b) 21 c) 25 d) 26.78

Last Answer : a) 19.09

Description : Calculate the energy when the magnetic intensity and magnetic flux density are 15 and 65 respectively. a) 755 b) 487.5 c) 922 d) 645

Last Answer : b) 487.5

Description : Find the magnetic flux density when a flux of 28 units is enclosed in an area of 15cm. a) 178.33 b) 186.67 c) 192.67 d) 124.33

Last Answer : b) 186.67

Description : Identify which of the following is the unit of magnetic flux density? a) Weber b) Weber/m c) Tesla d) Weber -1

Last Answer : c) Tesla

Description : Given the magnetic field is 2.4 units. Find the flux density in air(in 10 -6 order). a) 2 b) 3 c) 4 d) 5

Last Answer : b) 3

Description : The magnetic flux density is directly proportional to the magnetic field intensity. State True/False. a) True b) False

Last Answer : a) True

Description : Find the magnetic flux density of a finite length conductor of radius 12cm and current 3A in air( in 10 -6 order) a) 4 b) 5 c) 6 d) 7

Last Answer : b) 5

Description : The magnitude of the conduction current density for a magnetic field intensity of a vector yi + zj + xk will be a) 1.414 b) 1.732 c) -1.414 d) -1.732

Last Answer : b) 1.732

Description : When a material has zero permittivity, the maximum potential that it can possess is a) ∞ b) -∞ c) Unity d) Zero

Last Answer : d) Zero

Description : Find the vector potential when the field intensity 60x 2 varies from (0,0,0) to (1,0,0). a) 120 b) -20 c) -180 d) 60

Last Answer : b) -20

Description : Find the Gauss value for a position vector in Cartesian system from the origin to one unit in three dimensions. a) 0 b) 3 c) -3 d) 1

Last Answer : b) 3

Description : Find the electric field applied on a system with electrons having a velocity 5m/s subjected to a magnetic flux of 3.6 units. a) 15 b) 18 c) 1.38 d) 0.72

Last Answer : b) 18

Description : The electric field intensity of a field with velocity 10m/s and flux density of 2.8 units is a) 0.28 b) 28 c) 280 d) 10/2.8

Last Answer : b) 28

Description : Find the electric flux density of a material whose charge density is given by 12 units in a volume region of 0.5 units. a) 12 b) 24 c) 6 d) 48

Last Answer : c) 6

Description : In the medium of free space, the divergence of the electric flux density will be a) 1 b) 0 c) -1 d) Infinity

Last Answer : b) 0

Description : Calculate the emf of a material having flux density 5sin t in an area of 0.5 units. a) 2.5 sin t b) -2.5 cos t c) -5 sin t d) 5 cos t

Last Answer : d) 5 cos t

Description : The flux density of medium 1 has a normal component of 2.4 units, then the normal component of the flux density in the medium 2 will be a) 1.2 b) 4.8 c) 2.4 d) 0

Last Answer : c) 2.4

Description : Calculate the flux density due to a circular conductor of radius 100nm and current 5A in air. a) 10 b) 100 c) 0.1 d) 1

Last Answer : a) 10

Description : Consider the conductor to be a coil of turns 60 and the flux density to be 13.5 units, current 0.12A and area 16units. The torque will be a) 1555.2 b) 1222.5 c) 525.1 d) 255.6

Last Answer : a) 1555.2