Assertion In a uniform magnetic field `B=B_(0)hat(k)`, if velocity of a charged particle is `v_(0)hat(i)` at t = 0, then it can have the velocity `v_(

1 Answer

Answer :

Assertion In a uniform magnetic field `B=B_(0)hat(k)`, if velocity of a charged particle is `v_( ... . D. If Assertion is false but Reason is true.

Related questions

Description : Assertion If velocity of charged particle in a uniform magnetic field at some instant is `(a_(1)hat(i)-a_(2)hat(j))` and at some other instant is `(b_

Last Answer : Assertion If velocity of charged particle in a uniform magnetic field at some instant is `(a_(1)hat(i ... D. If Assertion is false but Reason is true.

Description : Two charged particles traverse identical helical paths in a completely opposite sense in a uniform magnetic field `vec(B)=B_(0)hat(K)`

Last Answer : Two charged particles traverse identical helical paths in a completely opposite sense in a uniform magnetic field `vec(B)=B_ ... + ((e)/(m))_(2) = 0`

Description : A charged particle enters into a uniform magnetic field with velocity `v_(0)` perpendicular to it , the length of magnetic field is `x=sqrt(3)/(2)R`,

Last Answer : A charged particle enters into a uniform magnetic field with velocity `v_(0)` perpendicular to it , the length of ... 3)v_(0))/(2)` D. `v_(0)`

Description : A particle of mass m and having a positive charge q is projected from origin with speed `v_(0)` along the positive X-axis in a magnetic field B = `-B_

Last Answer : A particle of mass m and having a positive charge q is projected from origin with speed `v_(0)` along the positive ... /(qB)` D. `(2mv_(0))/(qB_(0))`

Description : Assertion If the path of a charged particle in a region of uniform electric and magnetic field is not a circle, then its kinetic energy may remain con

Last Answer : Assertion If the path of a charged particle in a region of uniform electric and magnetic field is ... VxxB),` where symbols have their usual meanings.

Description : Assertion A charged particle is rotating in a circular path in uniform magnetic field. Then, plane of circle is perpendicular to the magnetic field. R

Last Answer : Assertion A charged particle is rotating in a circular path in uniform magnetic field. Then, plane of ... . If Assertion is false but Reason is true.

Description : Assertion If a charged particle enters from outside in uniform magnetic field, then it will keep on rotating in a circular path. Reson Magnetic force

Last Answer : Assertion If a charged particle enters from outside in uniform magnetic field, then it will keep on ... . If Assertion is false but Reason is true.

Description : Assertion When a charged particle moves perpendicular to a uniform magnetic field then its momentum remains constant. Reason Magnetic force acts perpe

Last Answer : Assertion When a charged particle moves perpendicular to a uniform magnetic field then its momentum ... Assertion is false but Reason is true.

Description : If a charged particle is a plane perpendicular to a uniform magnetic field with a time period T Then

Last Answer : If a charged particle is a plane perpendicular to a uniform magnetic field with a time period T Then A. `T^(2) ... ` C. `Tpropr^(2)` D. `Tpropr^(0)`

Description : Assertion Path of a charged particle in uniform magnetic field cannot be a parabola, if no other forces (other than magnetic force) are acting on the

Last Answer : Assertion Path of a charged particle in uniform magnetic field cannot be a parabola, if no other ... . If Assertion is false but Reason is true.

Description : Assertion In non-uniform magnetic field speed of a charged particle varies. Reason Work done by magnetic force on a charged particle is always zero.

Last Answer : Assertion In non-uniform magnetic field speed of a charged particle varies. Reason Work done by ... If Assertion is false but Reason is true.

Description : A charged particle is rotating in uniform circular motion in a uniform magnetic field . Let r= radius of circule, v= speed of particle k = kinetic ene

Last Answer : A charged particle is rotating in uniform circular motion in a uniform magnetic field . Let r ... angular speed. then match the following two columns.

Description : Assertion A charged particle is rotating in a circle. Then magnetic field (B) at centre of circle and magnetic moment (M) produced by motion of charge

Last Answer : Assertion A charged particle is rotating in a circle. Then magnetic field (B) at centre of circle and ... M and B are always parallel to each other.

Description : Assertion An `alpha-`particle and a deuteron having same kinetic energy enter in a uniform magnetic field perpendicular to the field. Then, radius of

Last Answer : Assertion An `alpha-`particle and a deuteron having same kinetic energy enter in a uniform magnetic ... If Assertion is false but Reason is true.

Description : If the velocity of charged particle has both perpendicular and parallel components while moving through a magnetic field ,then what is the path follow

Last Answer : If the velocity of charged particle has both perpendicular and parallel components while moving through a ... B. Ellipatical C. Linear D. Helical

Description : A charged particle enters in a uniform magnetic field perpendicular to it. Now match the following two columns.

Last Answer : A charged particle enters in a uniform magnetic field perpendicular to it. Now match the following two columns.

Description : A charged particle P leaves the origin with speed `v=v_0` at some inclination with the x-axis. There is a uniform magnetic field B along the x-axis. P

Last Answer : A charged particle P leaves the origin with speed `v=v_0` at some inclination with the x-axis. There is ... 0)` C. Both are correct D. Both are wrong

Description : When a charged particle enters a uniform magnetic field its kinetic energy

Last Answer : When a charged particle enters a uniform magnetic field its kinetic energy A. remains constant B. increases C. decreases D. becomes zero

Description : Work done by a uniform magnetic field in moving a charged particle in a circular path is a) qvB sin θ b) mg sin θ c) zero d) mg cos θ

Last Answer : Zero

Description : A charged particle is moving in a UNIFORM magnetic field. If the direction of motion of the charged particle is at right angles to the magnetic field, describe the shape of the charged particle's path.

Last Answer : ANSWER: CIRCULAR or CIRCLE

Description : A charged particle is moving in a UNIFORM magnetic field. If the direction of motion of the charged particle is parallel to the magnetic field, describe the shape of the charged particle's path. 

Last Answer : ANSWER: STRAIGHT LINE

Description : Assertion A beam of electron can pass undeflected through a region of E and B. Reason Force on moving charged particle due to magnetic field may be ze

Last Answer : Assertion A beam of electron can pass undeflected through a region of E and B. Reason Force on ... to magnetic field may be zero in some cases.

Description : A charged particle with a velocity `2xx10^(3) ms^(-1)` passes undeflected through electric field and magnetic fields in mutually perpendicular directi

Last Answer : A charged particle with a velocity `2xx10^(3) ms^(-1)` passes undeflected through electric field and magnetic fields ... 1)` D. `1.33xx10^(3)NC^(-1)`

Description : In the mass spectrograph, two positively charged ions having the same velocity pass through a slit and enter a uniform magnetic field at right angles to their initial velocities. The ions will NOT be ... charges and their masses are equal z) the ratios of their charges to their masses are equal  

Last Answer : ANSWER: Z -- THE RATIOS OF THEIR CHARGES TO THEIR MASSES ARE EQUAL 

Description : A particle of charge -q and mass m enters a uniform magnetic field `vecB` (perpendicular to paper inward) at P with a velocity `v_0` at an angle `alph

Last Answer : A particle of charge -q and mass m enters a uniform magnetic field `vecB` (perpendicular to paper inward) at P ... for time `t = (2m(pi-alpha))/(Bq)`

Description : Assertion If a charged particle is pronected in a region, where `B` is perpendicular to velocity of projection, then the net force acting on the parti

Last Answer : Assertion If a charged particle is pronected in a region, where `B` is perpendicular to velocity of ... D. If Assertion is false but Reason is true.

Description : A particle is projected in a plane perpendicular to a uniform magnetic field. The area bounded by the path described by the particle is proportional t

Last Answer : A particle is projected in a plane perpendicular to a uniform magnetic field. The area bounded by the ... C. the kinetic energy D. None of these

Description : A beam of protons with a velocity of `4 X 10 ^5 ms^(-1)` enters a uniform magnetic field of 0.3 T. The velocity makes an angle of `60^@` with the magn

Last Answer : A beam of protons with a velocity of `4 X 10 ^5 ms^(-1)` enters a uniform magnetic field of 0.3 T. The ... ` B. `0.012m` C. `0.024m` D. `0.048m`

Description : A particle of mass m and charge Q moving with a velocity v enters a region on uniform field of induction B Then its path in the region is s

Last Answer : A particle of mass m and charge Q moving with a velocity v enters a region on uniform field of induction B ... . circular,If `v.B=0` D. None of these

Description : A moving particle of charge q and mass m enters a uniform magnetic field perpendicular to the direction of field. Then

Last Answer : A moving particle of charge q and mass m enters a uniform magnetic field perpendicular to the ... circular path (D) its velocity vector changes

Description : Assertion Maganetic field (B) and electric field (E) are present in a this region. Net force on a charged particle in this region is zero , if `E=Bxx

Last Answer : Assertion Maganetic field (B) and electric field (E) are present in a this region. Net force on a ... v` Reason E/B has the dimensions of velocity.

Description : A uniform conducting ring of mass `pi` kg and radius 1 m is kept on smooth horizontal table. A uniform but time varying magnetic field `B = (hat (i) +

Last Answer : A uniform conducting ring of mass `pi` kg and radius 1 m is kept on smooth horizontal table. A uniform but time ... `(2)/(3pi)kJ` D. `(1)/(pi)kJ`

Description : A uniform conducting ring of mass `pi` kg and radius 1 m is kept on smooth horizontal table. A uniform but time varying magnetic field `B = (hat (i) +

Last Answer : A uniform conducting ring of mass `pi` kg and radius 1 m is kept on smooth horizontal table. A uniform but time ... `(5)/(pi)s` D. `(25)/(pi)s`

Description : The magnetic field at the centre of a circular coil of radius `r` carrying current `l` is `B_(1)`. The field at the centre of another coil of radius `

Last Answer : The magnetic field at the centre of a circular coil of radius `r` carrying current `l` is `B_(1)`. The field at the ... `1//2` B. `1` C. `2` D. `4`

Description : 3. A positively-charged particle (alpha-particle) projected towards the west is deflected towards north by a magnetic field. The direction of magnetic field is -Physics-10

Last Answer : The direction of the magnetic field can be determined using the Fleming’s Left hand rule. According to the rule, if we arrange our thumb, forefinger and the middle finger of the left ... north, hence the direction of magnetic field will be upward according to Fleming’s Left hand rule.

Description : A charged particle of mass `m` and charge `q` travels on a circular path of radius `r` that is perpendicular to a magnetic field `B`. The time takeen

Last Answer : A charged particle of mass `m` and charge `q` travels on a circular path of radius `r` that is perpendicular to a ... (2pi qB)/(m)` D. `(2pi m)/(qB)`

Description : A charged particle experience magnetic force in the presence of magnetic field. Which of the following statement is correct?

Last Answer : A charged particle experience magnetic force in the presence of magnetic field. Which of the ... and magnetic field is parallel to the velocity

Description : The force on a charged particle moving parallel to magnetic field lines is: w) in the direction of the field x) zero y) perpendicular to the field z) in the opposite direction of the field

Last Answer : ANSWER: X -- ZERO

Description : Two charged particles have charges and masses in the ratio `2:3` and `1:4` respectively. If they enter a uniform magnetic field and move with the same

Last Answer : Two charged particles have charges and masses in the ratio `2:3` and `1:4` respectively. If they enter a uniform magnetic ... `1:4` C. `3:5` D. `1:6`

Description : A non-relative proton enters at right angles to a uniform magnetic field of `30 mT`. What is the frequency of revolution of the particle if the field

Last Answer : A non-relative proton enters at right angles to a uniform magnetic field of `30 mT`. What is ... of the particle if the field is sufficiently deep?

Description : A proton of energy `8 eV` is moving in a circular path in a uniform magnetic field. The energy of an alpha particle moving in the same magnetic field

Last Answer : A proton of energy `8 eV` is moving in a circular path in a uniform magnetic field. The energy of an alpha ... will be A. 4eV B. 22eV C. 8eV D. 6eV

Description : Force on a moving charge in a uniform magnetic field depends uponA. magnetic flux density B. the charge on the particle C. the speed of particle D. all of above

Last Answer : all of above

Description : A proton and a α particle enter a region having a perpendicular uniform magnetic field. The ratio of time period of proton (τp) to time period of α particle (τα) is a) 1:4 b) 4:1 c) 2:1 d) 1:2

Last Answer : d) 1:2

Description : A charge q is moving with a velocity `v_(1)=1hati` m/s at a point in a magentic field and experiences a force `F=q[-hatj+1hatk]` N. If the charge is m

Last Answer : A charge q is moving with a velocity `v_(1)=1hati` m/s at a point in a magentic field and experiences a force `F ... `(hat(i)+hat(j)-hat(k))Wb//m^(2)`

Description : An electron starting at angle `alpha=60^(@)` with a uniform magnetic induction `B=0.1 T` moves with velocity `v=10^(6) m s^(-1)`. A screen is held at

Last Answer : An electron starting at angle `alpha=60^(@)` with a uniform magnetic induction `B=0.1 T` ... to the point on the screen where the electron strikes.

Description : An electron moves with a velocity of 2 × 106 ms-1 in the direction of a uniform magnetic field of 0.8 Tesla. The force on electron is a) 8 N b) 2 N c) 4 N d) Zero

Last Answer : d) Zero

Description : Assertion Net torque in the current carrying loop placed in a uniform magnetic field (pointing inwards) is zero. Reasonl Magnetic moment (M) is inward

Last Answer : Assertion Net torque in the current carrying loop placed in a uniform magnetic field (pointing inwards) ... . Reasonl Magnetic moment (M) is inwards.

Description : Assertion A flexeble wire loop of irregular shape carrying current when placed in a uniform external magnetic field acquires a circular shape. Reason

Last Answer : Assertion A flexeble wire loop of irregular shape carrying current when placed in a uniform external ... circular shape is having the greatert area.

Description : An α particle moves perpendicular to a constant magnetic field of strength 1.2 T in a circular path of radius 0.7 m. The speed of α particle in ms-1 is ______________ a) 2.7 × 107 b) 2.6 × 107 c) 3.2 × 107 d) 2.0 × 107

Last Answer : a) 2.7 × 107

Description : A planar coil having 12 turns carries 15 A current. The coil is oriented with respect to the uniform magnetic field `B= 0.2hati T` such that its direc

Last Answer : A planar coil having 12 turns carries 15 A current. The coil is oriented with respect to the ... energy of the coil in the given orientation is