3. ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus. -Maths 9th

1 Answer

Answer :

Solution: Given in the question, ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Construction, Join AC and BD. To Prove, PQRS is a rhombus. Proof: In ΔABC P and Q are the mid-points of AB and BC respectively , PQ || AC and PQ = ½ AC (Midpoint theorem) — (i) In ΔADC, SR || AC and SR = ½ AC (Midpoint theorem) — (ii) So, PQ || SR and PQ = SR As in quadrilateral PQRS one pair of opposite sides is equal and parallel to each other, so, it is a parallelogram. , PS || QR and PS = QR (Opposite sides of parallelogram) — (iii) Now, In ΔBCD, Q and R are mid points of side BC and CD respectively. , QR || BD and QR = ½ BD (Midpoint theorem) — (iv) AC = BD (Diagonals of a rectangle are equal) — (v) From equations (i), (ii), (iii), (iv) and (v), PQ = QR = SR = PS So, PQRS is a rhombus. Hence Proved

Related questions

Description : 2. ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle. -Maths 9th

Last Answer : Solution: Given in the question, ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. To Prove, PQRS is a rectangle. Construction, Join AC and BD. Proof: In ΔDRS and ... , In PQRS, RS = PQ and RQ = SP from (i) and (ii) ∠Q = 90° , PQRS is a rectangle.

Description : If ABCD is a rectangle and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively, then quadrilateral PQRS is a rhombus. -Maths 9th

Last Answer : Here, we are joining A and C. In ΔABC P is the mid point of AB Q is the mid point of BC PQ∣∣AC [Line segments joining the mid points of two sides of a triangle is parallel to AC(third side) and ... RS=PS=RQ[All sides are equal] ∴ PQRS is a parallelogram with all sides equal ∴ So PQRS is a rhombus.

Description : ABCD is a rectangle and p q r s are the mid points of the side AB BC CD AND DA respectively. Show that the quadrilateral PQRS is a rhombus -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. -Maths 9th

Last Answer : Given In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Also, AC = BD and AC ⊥ BD. To prove PQRS is a square. Proof Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

Description : P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. -Maths 9th

Last Answer : Given In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Also, AC = BD and AC ⊥ BD. To prove PQRS is a square. Proof Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

Description : ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see Fig 8.29). AC is a diagonal. Show that: (i) SR || AC and SR = 1/2 AC (ii) PQ = SR (iii) PQRS is a parallelogram. -Maths 9th

Last Answer : . Solution: (i) In ΔDAC, R is the mid point of DC and S is the mid point of DA. Thus by mid point theorem, SR || AC and SR = ½ AC (ii) In ΔBAC, P is the mid point of AB and Q is the mid point of BC. ... ----- from question (ii) ⇒ SR || PQ - from (i) and (ii) also, PQ = SR , PQRS is a parallelogram.

Description : P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. -Maths 9th

Last Answer : Given In a quadrilateral ABCD, P, Q, R and S are the mid-points of sides AB, BC, CD and DA, respectively. Also, AC = BD To prove PQRS is a rhombus.

Description : P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. -Maths 9th

Last Answer : Given In a quadrilateral ABCD, P, Q, R and S are the mid-points of sides AB, BC, CD and DA, respectively. Also, AC = BD To prove PQRS is a rhombus.

Description : ABCD is a square. P, Q, R, S are the mid-points of AB, BC, CD and DA respectively. By joining AR, BS, CP, DQ, we get a quadrilateral which is a -Maths 9th

Last Answer : According to the given statement, the figure will be a shown alongside; using mid-point theorem: In △ABC,PQ∥AC and PQ=21 AC .......(1) In △ADC,SR∥AC and SR=21 AC .... ... are perpendicular to each other) ∴PQ⊥QR(angle between two lines = angle between their parallels) Hence PQRS is a rectangle.

Description : ABCD is a trapezium in which AB || DC and AD = BC. If P, Q, R and S be respectively the mid-points of BA, BD, CD and CA, then PQRS is a -Maths 9th

Last Answer : Here is your First of all we will draw a quadrilateral ABCD with AD = BC and join AC, BD, P,Q,R,S are the mid points of AB, AC, CD and BD respectively. In the triangle ABC, P and Q are mid points of AB and AC respectively. All sides are equal so PQRS is a Rhombus.

Description : If P,Q,R,S are respectively the mid - points of the sides of a parallelogram ABCD, if ar(||gm PQRS) = 32.5cm2 , then find ar(||gm ABCD). -Maths 9th

Last Answer : Join PR. ∵ △PSR and ||gm APRD are on the same base and between same parallel lines. ar(△PSR) = 1/2 ar(||gm APRD) Similarly, ar(△PQR) = 1/2 ar(||gm PBCR) ar(△PQRS) = ar(△PSR) + △(PQR) = 1/2 ar(||gm APRD) + 1 ... |gm PBCR) = 1/2 ar(||gm ABCD) ⇒ ar(||gm ABCD) = 2 ar(||gm PQRS) = 2 32.5 = 65cm2

Description : If P,Q,R,S are respectively the mid - points of the sides of a parallelogram ABCD, if ar(||gm PQRS) = 32.5cm2 , then find ar(||gm ABCD). -Maths 9th

Last Answer : Join PR. ∵ △PSR and ||gm APRD are on the same base and between same parallel lines. ar(△PSR) = 1/2 ar(||gm APRD) Similarly, ar(△PQR) = 1/2 ar(||gm PBCR) ar(△PQRS) = ar(△PSR) + △(PQR) = 1/2 ar(||gm APRD) + 1 ... |gm PBCR) = 1/2 ar(||gm ABCD) ⇒ ar(||gm ABCD) = 2 ar(||gm PQRS) = 2 32.5 = 65cm2

Description : ABCD is a parallelogram in which P and Q are the mid-points of opposite sides AB and CD (Fig. 8.48). If AQ intersects DP at S and BQ intersects CP at R, show that -Maths 9th

Last Answer : Solution :-

Description : E and F are respectively the mid-points of the non-parallel sides AD and BC of a trapezium ABCD. Prove that EF||AB and EF = 1/2 (AB +CD). -Maths 9th

Last Answer : Solution :-

Description : Show that in a quadrilateral ABCD,AB + BC + CD + DA > AC + BD. -Maths 9th

Last Answer : Solution :-

Description : Points P and Q have been taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AP = CQ. Show that AC and PQ bisect each other. -Maths 9th

Last Answer : According to question parallelogram ABCD such that AP = CQ.

Description : Points P and Q have been taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AP = CQ. Show that AC and PQ bisect each other. -Maths 9th

Last Answer : According to question parallelogram ABCD such that AP = CQ.

Description : P and Q are the mid-points of the opposite sides AB and CD of a parallelogram ABCD. -Maths 9th

Last Answer : Given In a parallelogram ABCD, P and Q are the mid-points of AS and CD, respectively. To show PRQS is a parallelogram. Proof Since, ABCD is a parallelogram. AB||CD ⇒ AP || QC

Description : P and Q are the mid-points of the opposite sides AB and CD of a parallelogram ABCD. -Maths 9th

Last Answer : Given In a parallelogram ABCD, P and Q are the mid-points of AS and CD, respectively. To show PRQS is a parallelogram. Proof Since, ABCD is a parallelogram. AB||CD ⇒ AP || QC

Description : Find the area of a quadrilateral ABCD in which AB = 3 cm, BC = 4 cm, CD = 4 cm, DA = 5 cm and AC = 5 cm. -Maths 9th

Last Answer : Given a quadrilateral ABCD with AB = 3 cm, BC = 4 cm, CD = 4 cm, DA = 5 cm and AC = 5 cm. For ∆ABC, a = AB = 3 cm, b = BC = 4 cm and c = AC = 5 cm Now, area of quadrilateral ABCD = area of ∆ABC + area of ∆ACD = 6 cm2 + 9.2 cm2 = 15.2 cm2 (approx.)

Description : 5. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see Fig. 8.31). Show that the line segments AF and EC trisect the diagonal BD. -Maths 9th

Last Answer : . Solution: Given that, ABCD is a parallelogram. E and F are the mid-points of sides AB and CD respectively. To show, AF and EC trisect the diagonal BD. Proof, ABCD is a parallelogram , AB || CD also, ... (i), DP = PQ = BQ Hence, the line segments AF and EC trisect the diagonal BD. Hence Proved.

Description : The quadrilateral formed by joining the mid-points of the sides of a quadrilateral PQRS, taken in order, is a rectangle, if -Maths 9th

Last Answer : According to question the mid-points of the sides of a quadrilateral PQRS, taken in order, is a rectangle,

Description : The quadrilateral formed by joining the mid-points of the sides of a quadrilateral PQRS, taken in order, is a rectangle, if -Maths 9th

Last Answer : According to question the mid-points of the sides of a quadrilateral PQRS, taken in order, is a rectangle,

Description : Let P(–3, 2), Q(–5, –5), R(2, –3) and S(4, 4) be four points in a plane. Then show that PQRS is a rhombus. Is it a square ? -Maths 9th

Last Answer : Let P(1, -1), Q \(\big(rac{-1}{2},rac{1}{2}\big)\) and R(1,2) be the vertices of the ΔPQR.Then, PQ = \(\sqrt{\big(rac{-1}{2}-1\big)^2+\big(rac{1}{2}+1\big)^2}\) = \(\sqrt{rac{9}{4}+rac{9}{4}} ... {3\sqrt2}{2}\)PR = \(\sqrt{(1-1)^2+(2+1)^2}\) = \(\sqrt9\) = 3∵ PQ = QR, the triangle PQR is isosceles.

Description : Points P and Q have been taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AP = CQ . -Maths 9th

Last Answer : Join AQ and PC . Since ABCD is a parallelogram . ⇒ AB | | DC ⇒ AP | | QC ∵ AP and QC are parts of AB and DC respectively] Also, AP = CQ [given] Thus, APCQ is a parallelogram . We know that diagonals of a parallelogram bisect each other . Hence AC and PQ bisect each other .

Description : Points P and Q have been taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AP = CQ . -Maths 9th

Last Answer : Join AQ and PC . Since ABCD is a parallelogram . ⇒ AB | | DC ⇒ AP | | QC ∵ AP and QC are parts of AB and DC respectively] Also, AP = CQ [given] Thus, APCQ is a parallelogram . We know that diagonals of a parallelogram bisect each other . Hence AC and PQ bisect each other .

Description : The middle points of the parallel sides AB and CD of a parallelogram ABCD are P and Q respectively. If AQ and CP divide the diagonal BD -Maths 9th

Last Answer : answer:

Description : If P, Q and R are the mid-points of the sides, BC, CA and AB of a triangle and AD is the perpendicular from A on BC, then prove that P, Q, R and D are concyclic. -Maths 9th

Last Answer : According to question prove that P, Q, R and D are concyclic.

Description : If P, Q and R are the mid-points of the sides, BC, CA and AB of a triangle and AD is the perpendicular from A on BC, then prove that P, Q, R and D are concyclic. -Maths 9th

Last Answer : According to question prove that P, Q, R and D are concyclic.

Description : The quadrilateral formed by joining the mid-points of the side of quadrilateral PQRS, taken in order, is a rhombus, if -Maths 9th

Last Answer : (d) Given, the quadrilateral ABCD is a rhombus. So, sides AB, BC, CD and AD are equal.

Description : The quadrilateral formed by joining the mid-points of the side of quadrilateral PQRS, taken in order, is a rhombus, if -Maths 9th

Last Answer : (d) Given, the quadrilateral ABCD is a rhombus. So, sides AB, BC, CD and AD are equal.

Description : ABCD is a rectangle formed by the points A(–1, –1), B(–1, 4), C(5, 4) and D(5, –1). P, Q, R and S are mid-points -Maths 9th

Last Answer : (b) RhombusAB = \(\sqrt{(3-1)^2+(5-1)^2}\) = \(\sqrt{4+16}\) = \(\sqrt{20}\) = \(2\sqrt5\)BC = \(\sqrt{(1-5)^2+(1-3)^2}\) = \(\sqrt{16+4}\) = \(\sqrt{20}\) = \(2\sqrt5\)CD = \ ... = \(6\sqrt2\)Now, AB = BC = CD = AD ⇒ All sides are equal Also, AC ≠ BD ⇒ Diagonals are not equal. ⇒ ABCD is a rhombus.

Description : ABCD is a square. E and F are respectively the mid - points of BC and CD. If R is the mid point of EF. -Maths 9th

Last Answer : Since R is the mid point of EF . ∴ AR is the median in △AEF. As, a median of a triangle divides it into two triangles of equal area . ∴ ar(△AER) = ar(△AFR)

Description : ABCD is a square. E and F are respectively the mid - points of BC and CD. If R is the mid point of EF. -Maths 9th

Last Answer : Since R is the mid point of EF . ∴ AR is the median in △AEF. As, a median of a triangle divides it into two triangles of equal area . ∴ ar(△AER) = ar(△AFR)

Description : ABCD is a trapezium in which AB || CD and AD = BC (see Fig. 8.23). Show that (i) ∠A = ∠B (ii) ∠C = ∠D (iii) ΔABC ≅ ΔBAD (iv) diagonal AC = diagonal BD [Hint : Extend AB and draw a line through C parallel to DA intersecting AB produced at E.] -Maths 9th

Last Answer : ] Solution: To Construct: Draw a line through C parallel to DA intersecting AB produced at E. (i) CE = AD (Opposite sides of a parallelogram) AD = BC (Given) , BC = CE ⇒∠CBE = ∠CEB also, ∠A+∠CBE = ... BC (Given) , ΔABC ≅ ΔBAD [SAS congruency] (iv) Diagonal AC = diagonal BD by CPCT as ΔABC ≅ ΔBA.

Description : D,E and F are the mid-points of the sides BC,CA and AB,respectively of an equilateral triangle ABC.Show that △DEF is also an euilateral triangle -Maths 9th

Last Answer : Solution :-

Description : A rectangle is formed by joining the mid-points of the sides of a rhombus. Show that the area of rectangle is half the area of rhombus. -Maths 9th

Last Answer : hope its clear

Description : In Fig. 8.40, points M and N are taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AM = CN. Show that AC and MN bisect each other. -Maths 9th

Last Answer : Solution :-

Description : In a trapezoid ABCD, side BC is parallel to side AD. Also, the lengths of the sides AB, BC, CD and AD are 8, 2, 8 and 10 units respectively -Maths 9th

Last Answer : answer:

Description : E and F are respectively the mid-points of the non-parallel sides AD and BC of a trapezium ABCD. -Maths 9th

Last Answer : According to question the mid-points of the non-parallel sides AD and BC of a trapezium ABCD.

Description : E and F are respectively the mid-points of the non-parallel sides AD and BC of a trapezium ABCD. -Maths 9th

Last Answer : According to question the mid-points of the non-parallel sides AD and BC of a trapezium ABCD.

Description : ABCD is a square. E and F are respectively the mid-points of BC and CD. -Maths 9th

Last Answer : According to question prove that ar (ΔAER) = ar (ΔAFR).

Description : ABCD is a square. E and F are respectively the mid-points of BC and CD. -Maths 9th

Last Answer : According to question prove that ar (ΔAER) = ar (ΔAFR).

Description : In trapezium ABCD, AB || DC and L is the mid-point of BC. Through L, a line PQ || AD has been drawn which meets AB in P and DC produced in Q. -Maths 9th

Last Answer : According to question prove that ar (ABCD) = ar (APQD).

Description : In trapezium ABCD, AB || DC and L is the mid-point of BC. Through L, a line PQ || AD has been drawn which meets AB in P and DC produced in Q. -Maths 9th

Last Answer : According to question prove that ar (ABCD) = ar (APQD).

Description : D, E and F are respectively the mid-points of the sides AB, BC and CA of a triangle ABC. -Maths 9th

Last Answer : Since the segment joining the mid points of any two sides of a triangle is half the third side and parallel to it. DE = 1 / 2 AC ⇒ DE = AF = CF EF = 1 / 2 AB ⇒ EF = AD = BD DF = 1 ... △DEF ≅ △AFD Thus, △DEF ≅ △CFE ≅ △BDE ≅ △AFD Hence, △ABC is divided into four congruent triangles.

Description : In the fig, D, E and F are, respectively the mid-points of sides BC, CA and AB of an equilateral triangle ABC. -Maths 9th

Last Answer : Since line segment joining the mid-points of two sides of a triangle is half of the third side. Therefore, D and E are mid-points of BC and AC respectively. ⇒ DE = 1 / 2 AB --- (i) E and F are the mid - ... CA ⇒ DE = EF = FD [using (i) , (ii) , (iii) ] Hence, DEF is an equilateral triangle .

Description : D, E and F are respectively the mid-points of the sides AB, BC and CA of a triangle ABC. -Maths 9th

Last Answer : Since the segment joining the mid points of any two sides of a triangle is half the third side and parallel to it. DE = 1 / 2 AC ⇒ DE = AF = CF EF = 1 / 2 AB ⇒ EF = AD = BD DF = 1 ... △DEF ≅ △AFD Thus, △DEF ≅ △CFE ≅ △BDE ≅ △AFD Hence, △ABC is divided into four congruent triangles.

Description : In the fig, D, E and F are, respectively the mid-points of sides BC, CA and AB of an equilateral triangle ABC. -Maths 9th

Last Answer : Since line segment joining the mid-points of two sides of a triangle is half of the third side. Therefore, D and E are mid-points of BC and AC respectively. ⇒ DE = 1 / 2 AB --- (i) E and F are the mid - ... CA ⇒ DE = EF = FD [using (i) , (ii) , (iii) ] Hence, DEF is an equilateral triangle .

Description : PQRS is a rectangle in which PQ = 2PS. T and U are the mid-points of PS and PQ respectively. QT and US intersect at V. -Maths 9th

Last Answer : answer: