Identify the necessary condition for fixed beam
a. bending to be as single continuous curve
b.bending to be as double continuous curve
c.bending to be as discontinuous curve
d.bending to be as multiple continuous curve

1 Answer

Answer :

a. bending to be as single continuous curve

Related questions

Description : In continuous beam if it is end is fixed supported the bending moment will be a. zero b. neglected c. infinite

Last Answer : a. zero

Description : In continuous beam if it is end simply supported the bending moment will be a. zero b. neglected c. infinite

Last Answer : a. zero

Description : In continuous beam, the intermediate beams are subjected to a. some bending moment b. no bending moment c. no slope d.no deflection

Last Answer : a. some bending moment

Description : When sinking is accounted in a continuous beam the bending moment is a. modified b.same c.zero d.infinite

Last Answer : a. modified

Description : In comparison with a simply supported beam of same span and load , a continuous beam has a.less maximum bending moment b. same bending moment c. higher maximum bending moment d. twice the bending moment

Last Answer : a.less maximum bending moment

Description : For bending equation to be valid, radius of curvature of the beam after bending should be a. Equal to its transverse dimensions b. Infinity c. Very large compared to its transverse dimensions d. Double its transverse dimensions

Last Answer : c. Very large compared to its transverse dimensions

Description : In an UDL fixed beam free moment diagram gives a bending moment of a. Convex up b. Convex down c. Concave up d.Concave down

Last Answer : b. Convex down

Description : In a mid point loaded fixed beam,the free bending moment diagram is a a.square b.rectangle c.triangle d.trapezium

Last Answer : c.triangle

Description : In a mid point loaded fixed beam,the fixed bending moment diagram is a a.square b.rectangle c.triangle d.trapezium

Last Answer : b.rectangle

Description : In an off centrepoint loaded fixed beam the fixed bending moment diagram is a a.square b.rectangle c.triangle d.trapezium

Last Answer : d.trapezium

Description : In an off centre point loaded fixed beam the free bending moment diagram is a a.square b.rectangle c.triangle d.trapezium

Last Answer : c.triangle

Description : For the same span and loads fixed beam in comparison with simply supported beams has a. lesser value of maximum bending moment b. more value of maximum bending moment c.twice the value of maximum bending moment d.same value of maximum bending moment

Last Answer : a. lesser value of maximum bending moment

Description : For a fixed beam with UDL, maximum bending moment at end is a. wL2/12 b.wL2/24 c.wL2/36 d.wL2/48

Last Answer : a. wL2/12

Description : For a fixed beam with UDL,maximum bending moment at midpoint is a. wL3/248 b. wL2/248 c. wL2/24 d. wL2/24

Last Answer : c. wL2/24

Description : In case of a cantilever beam, bending moment at the fixed end will be (a) Maximum (b) Minimum (c) Zero (d) None

Last Answer : (a) Maximum

Description : The bending moment at the fixed end of a cantilever beam is (a) Maximum (b) Minimum (c) Wl/2 (d) Wl

Last Answer : (a) Maximum

Description : If a continuous beam is fixed on the right then the imaginary span is taken a.before the right end b. after the right end c. before the left end d. after the left end

Last Answer : b. after the right end

Description : A beam is called continuous beamif it has is a. more than one support b. more than two support c.more than one fixed support d. more than two fixed support

Last Answer : b. more than two support

Description : The bending moment diagram for a cantilever with point load, at the free end will be (a) A triangle with max. height under free end (b) A triangle with max. height under fixed end (c) A parabolic curve (d) None of these

Last Answer : (b) A triangle with max. height under fixed end

Description : .For a fixed beam with UDL,the free moment diagram represent a a.rectangle b.parabola c.triangle d.cubic curve

Last Answer : b.parabola

Description : With identical beam and column, buckling occurs as compared to bending under a (a) Lesser load (b) Larger load (c) Equal load (d) None

Last Answer : (a) Lesser load

Description : Bending of beam occurs under (a) Axial load (b) Transverse load (c) Direct load (d) None

Last Answer : (b) Transverse load

Description : A beam is designed on the basis of a. Maximum bending moment b. Minimum shear force. c.Maximum bending moment as well as for maximum shear force d. None.

Last Answer : c.Maximum bending moment as well as for maximum shear force

Description : In a simple bending theory, one of the assumption is that the plane sections before bending remain plane after bending. This assumption means that a. stress is uniform throughout the beam b. ... the distance from the neutral axis d. strain is proportional to the distance from the neutral axis

Last Answer : d. strain is proportional to the distance from the neutral axis

Description : In a simple bending theory, one of the assumption is that the material of the beam is isotropic. This assumption means that the a. normal stress remains constant in all directions b. ... c. elastic constants are same in all the directions d. elastic constants varies linearly in the material

Last Answer : c. elastic constants are same in all the directions

Description : A beam of uniform strength has a. same cross-section throughout the beam b. same bending stress at every section c. same bending moment at every section d. same shear stress at every section

Last Answer : b. same bending stress at every section

Description : When a beam is subjected to a bending moment the strain in a layer is …………the distance from the neutral axis. (a) Independent of (b) Directly proportional to (c) Inversely proportional to (d) None of these

Last Answer : (b) Directly proportional to

Description : In a simply supported beam loaded with U.D.L over the whole section, the bending stress is …………. at top and ………….. at bottom. (a) Compressive, tensile (b) Tensile, compressive (c) Tensile, zero (d) Compressive, zero

Last Answer : (a) Compressive, tensile

Description : Variation of bending strain in a beam has (a) Parabolic variation (b) Linear variation (c) Cubical variation (d) None

Last Answer : (b) Linear variation

Description : Moment of resistance of a beam should be (a) Greater than the bending moment (b) Less than the bending moment (c) Two times the bending moment (d) None

Last Answer : (a) Greater than the bending moment

Description : Variation of bending stresses in a beam have (a) Parabolic variation (b) Linear variation (c) Cubical variation (d) None

Last Answer : (b) Linear variation

Description : The strength of a beam depends upon (a) Its section modulus (b) Permissible bending stress (c) Both (a) and (b) (d) None of these

Last Answer : (a) Its section modulus

Description : A uniformly distributed load of 20 kN/m acts on a simply supported beam of rectangular cross section of width 20 mm and depth 60 mm. What is the maximum bending stress acting on the beam of 5m? a. 5030 Mpa b. 5208 Mpa c. 6600 Mpa d. Insufficient data

Last Answer : b. 5208 Mpa

Description : Maximum bending moment in a cantilever beam having a UDL over entire length will be (a) wL2/2 (b) wL2/4 (c) wL2/8 (d) None

Last Answer : a) wL2/2

Description : Maximum bending moment in a S.S. beam having a UDL over entire length will be (a) wL2/2 (b) wL2/4 (c) wL2/8 (d) None

Last Answer : (c) wL2/8

Description : Maximum bending moment in a S.S. beam having a concentrated load at the centre will be (a) WL (b) WL/2 (c) WL/4 (d) None

Last Answer : (c) WL/4

Description : In case of a cantilever beam having UDL, bending moment variation will be (a) Linear (b) Parabolic (c) Cubic (d) None

Last Answer : (b) Parabolic

Description : In case of a cantilever beam having concentrated loads, bending moment variation will be (a) Linear (b) Parabolic (c) Cubic (d) None

Last Answer : (a) Linear

Description : In case of a cantilever beam, bending moment at the free end will be (a) Maximum (b) Minimum (c) Zero (d) None

Last Answer : c) Zero

Description : At the supports of a simply supported beam, bending moment will be (a) Maximum (b) Minimum (c) Zero (d) None

Last Answer : (c) Zero

Description : Under sagging bending moment, the uppermost fiber of the beam is in (a) Shear (b) Compression (c) Tension (d) None)

Last Answer : (b) Compression

Description : A concentrated load P acts on a simply supported beam of span L at a distance L/3 from the left support. The bending moment at the point of application of the load is given by (a) PL/3 (b) 2PL/3 (c) PL/9 (d) 2PL/9

Last Answer : (d) 2PL/9

Description : The concavity produced on the beam section about the centre line when downward force acts on it is called as (a) Hogging or positive bending moment (b) Hogging or negative bending moment (c) Sagging or positive bending moment (d) Sagging or negative bending moment

Last Answer : (b) Hogging or negative bending moment

Description : The slope of shear force line at any section of the beam is also called (a) Bending moment at that section (b) Rate of loading at that section (c) Maximum Shear force (d) Maximum bending moment

Last Answer : (b) Rate of loading at that section

Description : In a simply supported beam subjected to uniformly distributed load (w) over the entire length (l), total load=W, maximum Bending moment is (a) Wl/8 or wl2/8 at the mid-point (b) Wl/8 or wl2/8 at the end (c) Wl/4 or wl2/4 (d) Wl/2

Last Answer : (a) Wl/8 or wl2/8 at the mid-point

Description : A sudden jump anywhere on the Bending moment diagram of a beam is caused by (a) Couple acting at that point (b) Couple acting at some other point (c) Concentrated load at the point (d) Uniformly distributed load or Uniformly varying load on the beam

Last Answer : (a) Couple acting at that point

Description : For any part of a beam subjected to uniformly distributed load, bending moment diagram is (a) Horizontal straight line (b) Vertical straight line (c) Line inclined to x-axis (d) Parabola

Last Answer : d) Parabola

Description : For any part of a beam between two concentrated load, Bending moment diagram is a (a) Horizontal straight line (b) Vertical straight line (c) Line inclined to x-axis (d) Parabola

Last Answer : (c) Line inclined to x-axis

Description : In a simply supported beam, bending moment at the end (a) Is always zero if it does not carry couple at the end (b) Is zero, if the beam has uniformly distributed load only (c) Is zero if the beam has concentrated loads only (d) May or may not be zero

Last Answer : (a) Is always zero if it does not carry couple at the end