A concentrated load P acts on a simply supported beam of span L at a distance L/3 from
the left support. The bending moment at the point of application of the load is given by
(a) PL/3
(b) 2PL/3
(c) PL/9
(d) 2PL/9

1 Answer

Answer :

(d) 2PL/9

Related questions

Description : A simply supported beam of span L carries a concentrated load W at its mid-span. The maximum  bending moment M is  (A) WL/2  (B) WL/4  (C) WL/8  (D) WL/12

Last Answer : (B) WL/4

Description : In a simply supported beam, bending moment at the end (a) Is always zero if it does not carry couple at the end (b) Is zero, if the beam has uniformly distributed load only (c) Is zero if the beam has concentrated loads only (d) May or may not be zero

Last Answer : (a) Is always zero if it does not carry couple at the end

Description : In comparison with a simply supported beam of same span and load , a continuous beam has a.less maximum bending moment b. same bending moment c. higher maximum bending moment d. twice the bending moment

Last Answer : a.less maximum bending moment

Description : In a simply supported beam subjected to uniformly distributed load (w) over the entire length (l), total load=W, maximum Bending moment is (a) Wl/8 or wl2/8 at the mid-point (b) Wl/8 or wl2/8 at the end (c) Wl/4 or wl2/4 (d) Wl/2

Last Answer : (a) Wl/8 or wl2/8 at the mid-point

Description : 18.The total extension of a taper rod of length ‘L’ and end diameters ‘D1’ and ‘D2’, subjected to a load (P), is given of a. 4PL/ΠE. D1D2 b. 3PL/ΠE. D1D2 c. 2PL/ΠE. D1D2 d. PL/ΠE.D1D2 Where E=Young’s modulus of elasticity

Last Answer : a. 4PL/ΠE. D1D2

Description : For the same span and loads fixed beam in comparison with simply supported beams has a. lesser value of maximum bending moment b. more value of maximum bending moment c.twice the value of maximum bending moment d.same value of maximum bending moment

Last Answer : a. lesser value of maximum bending moment

Description : For a simply supported beam of span L, with point load W at the centre, the maximum B.M. will be (a) WL (b) WL/2 (c) WL/4 (d) WL/8

Last Answer : (c) WL/4

Description : In a simply supported beam carrying a uniformly distributed load over the left half span, the point of contraflexure will occur in (a) Left half span of the beam (b) Right half span of the beam. (c) Quarter points of the beam (d) Does not exist

Last Answer : (d) Does not exist

Description : A simply supported beam carries two equal concentrated loads W at distances L/3 from either support. The maximum bending moment (A) WL/3 (B) WL/4 (C) 5WL/4 (D) 3WL/12

Last Answer : (A) WL/3

Description : A uniformly distributed load of 20 kN/m acts on a simply supported beam of rectangular cross section of width 20 mm and depth 60 mm. What is the maximum bending stress acting on the beam of 5m? a. 5030 Mpa b. 5208 Mpa c. 6600 Mpa d. Insufficient data

Last Answer : b. 5208 Mpa

Description : The shear force at the centre of a simply supported beam of span l carrying a uniformly distributed load of w per unit length over the whole span is (a) wl (b) wl/2 (c) wl/4 (d) Zero

Last Answer : (d) Zero

Description : In continuous beam if it is end simply supported the bending moment will be a. zero b. neglected c. infinite

Last Answer : a. zero

Description : At the supports of a simply supported beam, bending moment will be (a) Maximum (b) Minimum (c) Zero (d) None

Last Answer : (c) Zero

Description : Bending moment at supports in case of simply supported beam is always (a) Zero (b) Positive (c) Negative (d) Depends upon loading

Last Answer : (a) Zero

Description : For a simply supported beam of span L, loaded with U.D.L. w/m over the whole span, the maximum B.M will be (a) wL/4 (b) wL2 /8 (c) wL2 /4 (d) WwL2 /2

Last Answer : (b) wL2

Description : In a simply supported beam loaded with U.D.L over the whole section, the bending stress is …………. at top and ………….. at bottom. (a) Compressive, tensile (b) Tensile, compressive (c) Tensile, zero (d) Compressive, zero

Last Answer : (a) Compressive, tensile

Description : A simply supported beam of span carries a uniformly distributed load . The maximum bending moment is (A) WL/2 (B) WL/4 (C) WL/8 (D) WL/12

Last Answer : (C) WL/8

Description : The maximum bending moment due to a moving load on a simply supported beam, occurs (A) At the mid span (B) At the supports (C) Under the load (D) Anywhere on the beam

Last Answer : (C) Under the load

Description : A beam of uniform rectangular section 200 mm wide and 300mm deep is simply supported at its ends.It carries a uniformly distributed load of 9KN/m run over the entire span of 5m.If E=1×104 N/mm2, what is the maximum deflection? a.14.26 mm b.17.28 mm c.18.53 mm d.16.27 mm.

Last Answer : d.16.27 mm.

Description : A simply supported beam carries a uniformly distributed load over the whole span.The deflection at the centre is y.If the distributed load per unit length is doubled and also depth of beam is doubled ,then the deflection at the centre would be a.2y b.4y c.y/2 d.y/4.

Last Answer : d.y/4.

Description : A simply supported beam is of rectangular section.It carries a uniformly distributed load over the whole span.The deflection at the centre is y.If the depth of beam is doubled ,the deflection at the centre would be a.2y b.4y c.y/2 d.y/8.

Last Answer : d.y/8.

Description : A sudden jump anywhere on the Bending moment diagram of a beam is caused by (a) Couple acting at that point (b) Couple acting at some other point (c) Concentrated load at the point (d) Uniformly distributed load or Uniformly varying load on the beam

Last Answer : (a) Couple acting at that point

Description : Maximum bending moment in a S.S. beam having a concentrated load at the centre will be (a) WL (b) WL/2 (c) WL/4 (d) None

Last Answer : (c) WL/4

Description : For any part of a beam between two concentrated load, Bending moment diagram is a (a) Horizontal straight line (b) Vertical straight line (c) Line inclined to x-axis (d) Parabola

Last Answer : (c) Line inclined to x-axis

Description : For a simply supported beam carrying uniformly distributed load W on it entire length L, the maximum bending moment is (A) WL/4 (B) WL/8 (C) WL/2 (D) WL/3

Last Answer : (B) WL/8

Description : Deflection of a simply supported beam when subjected to central point load is given as ________ a. (Wl /16 EI) b. (Wl2/16 EI) c. (Wl3/48 EI) d. (5Wl4/ 384EI)

Last Answer : c. (Wl3/48 EI)

Description : In a cantilever subjected to a concentrated load (W) at the free end and having length =l, Maximum bending moment is (a) Wl at the free end (b) Wl at the fixed end (c) Wl/2 at the fixed end (d) Wl at the free end

Last Answer : (b) Wl at the fixed end

Description : When a series of wheel loads crosses a simply supported girder, the maximum bending moment under any given wheel load occurs when (A) The centre of gravity of the load system is midway between the centre of ... the centre of span and the centre of gravity of the load system (D) None of the above

Last Answer : (B) The centre of span is midway between the centre of gravity of the load system and the wheel load under consideration

Description : For the same span and loads fixed beam in comparison with simply supported beams has a. lesser value of maximum deflection b. more value of maximum deflecction c.twice the value of maximum deflecction d.same value of maximum deflecction

Last Answer : a. lesser value of maximum deflection

Description : The maximum deflection of  (A) A simply supported beam carrying a uniformly increasing load from either end and having  the apex at the mid span is WL3 /60EI (B) A fixed ended beam ... ended beam carrying a concentrated load at the mid span is WL3 /192EI (D) All the above 

Last Answer : (D) All the above 

Description : Maximum deflection of a (A) Cantilever beam carrying a concentrated load W at its free end is WL3 /3EI (B) Simply supported beam carrying a concentrated load W at mid-span is WL3 /48EI (C) Cantilever beam, carrying a uniformly distributed load over span is WL3 /8EI (D) All the above

Last Answer : (D) All the above

Description : A simply supported beam AB is subjected to a concentrated load at C, the centre of the span. The area of the SF diagram from A to C will give a) BM at C b) Load at S c) SF at C d)Difference between BM values at A and C

Last Answer : d)Difference between BM values at A and C

Description : If K is a constant depending upon the ratio of the width of the slab to its effective span l, x is the distance of the concentrated load from the nearer support, bw is the width of the area of contact of the concentrated load measured ... ) Kx (1 - x/l) + bw (C) Kx (1 + x/l) + bw (D) All the above

Last Answer : Answer: Option B

Description : The ratio of the length and diameter of a simply supported uniform circular beam which  experiences maximum bending stress equal to tensile stress due to same load at its mid span, is  (A) 1/8  (B) 1/4  (C) 1/2  (D) 1/3 

Last Answer : (C) 1/2 

Description : The ratio of the length and depth of a simply supported rectangular beam which experiences  maximum bending stress equal to tensile stress, due to same load at its mid span, is  (A) 1/2  (B) 2/3  (C) 1/4  (D) 1/3

Last Answer : (B) 2/3 

Description : A beam 3m long simply supported at its ends ,is carrying a point load W at the centre.If the slope at the ends of the beam should not exceed 10,find the deflection at the centre of beam? a.18.41 mm b.13.45 mm c.17.45 mm d.21.67 mm.

Last Answer : c.17.45 mm

Description : When a simply supported beam is loaded with a point load at the centre, the maximum tensile stress is developed on the (a) Top fibre (b) Bottom fibre (c) Neutral axis (d) None of these

Last Answer : (b) Bottom fibre

Description : For a simply supported beam, loaded with point load, the B.M.D. will be (a) A triangle (b) A parabolic curve (c) A cubic curve (d) None of these

Last Answer : a) A triangle

Description : The maximum bending moment due to a train of wheel loads on a simply supported girder (A) Always occurs at centre of span (B) Always occurs under a wheel load (C) Never occurs under a wheel load (D) None of the above

Last Answer : (B) Always occurs under a wheel load

Description : What is the distance away from midspan of a plastic hinge if developing in a simply supported beam of rectangular cross-section and span 6 m, subjected to a point load at the centre? (a) Zero (b) 1 m (c) 2 m (d) 3 m

Last Answer : (a) Zero

Description : In a cantilever subjected to a combination of concentrated load, uniformly distributed load and uniformly varying load, Maximum bending moment is (a) Where shear force=0 (b) At the free end (c) At the fixed end (d) At the mid-point

Last Answer : (c) At the fixed end

Description : In case of a cantilever beam having concentrated loads, bending moment variation will be (a) Linear (b) Parabolic (c) Cubic (d) None

Last Answer : (a) Linear

Description : A continuous beam is simply supported on its one or both the end supports the fixing moment on simply supported beam end is a. zero b. infinite c. neglected in calculation d. multiplied by a cross over factor in calculation

Last Answer : a. zero

Description : In continuous beam if it is end is fixed supported the bending moment will be a. zero b. neglected c. infinite

Last Answer : a. zero

Description : For a fixed beam with midpoint load point moment for x

Last Answer : b. P/8(4x-L)

Description : For finding out the bending moment for the arm (spoke) of flywheel the arm is assumed as 1. a cantilever beam fixed at the rim and subjected to tangential force at the hub 2. a simply ... tangential force at the rim 4. a fixed beam fixed at hub and rim and carrying uniformly distributed load

Last Answer : 3. a cantilever hub fixed at the rim and subjected to tangential force at the rim

Description : For finding out the bending moment for the arm (spoke) of flywheel, the arm is assumed as, (A) A cantilever beam fixed at the rim and subjected to tangential force at the hub (B) A simply ... tangential force at the rim (D) A fixed beam fixed at hub and rim and carrying uniformly distributed load

Last Answer : (C) A cantilever beam fixed at the hub and subjected to tangential force at the rim

Description : The maximum bending moment for a simply supported beam with a uniformly distributed  load w/unit length, is  (A) WI/2  (B) WI²/4  (C) WI²/8  (D) WI²/12

Last Answer : (C) WI²/8 

Description : For a simply supported beam with a central load, the bending moment is  (A) Least at the centre  (B) Least at the supports  (C) Maximum at the supports  (D) Maximum at the centre

Last Answer : (D) Maximum at the centre