The value of first quantized Bohr orbit radius of hydrogen atom is
a) 0.0053 nm b) 5.3 nm c) 0.053 nm d) 0.053 cm

1 Answer

Answer :

c) 0.053 nm

Related questions

Description : The quantized Bohr orbit radius of electron in hydrogen atom is given by a) n2 r3 b) nr1 c) n2 r2 d) n2 r1

Last Answer : d) n2 r1

Description : According to Bohr’s theory, the fourth stationary orbit of electrons in the hydrogen atom is a) 4 (0.053 nm) b) 9 (0.053 nm) c) 16 (0.053 nm) d) 25(0.053 nm)

Last Answer : c) 16 (0.053 nm)

Description : The radius of hydrogen atom is about a) 5 x 10-11 m b) 5 x 10-11 cm c) 5 x 10-11 mm d) 5 x 10-11 dm

Last Answer : a) 5 x 10-11 m

Description : The amount of energy required to completely remove an electron from the first Bohr orbit is a) 13.6 MeV b) 13.6 eV c) 1.36 MeV d) 1.36 eV

Last Answer : b) 13.6 eV

Description : The energy required to completely remove an electron from the first Bohr orbit is called a) excited energy b) ionization energy c) accelerated energy d) orbital energy

Last Answer : b) ionization energy

Description : The total energy of electron in the Bohr orbit is given by the formula, E = a) - ke2 /2r b) - ke2 /2r2 c) - k 2 e/2r d) - ke2 /r

Last Answer : a) - ke2 /2r

Description : The average current due to an electron orbiting the proton in the `n^(th)` Bohr orbit of the hydrogen atom is

Last Answer : The average current due to an electron orbiting the proton in the `n^(th)` Bohr orbit of the hydrogen atom ... `propn^3` C. `propb` D. none of these

Description : Calculate the energy of hydrogen atom in the ground state given that the after Bohr orbit og hydrogen is `5xx10^(-11)m` and electronic charge is `1.6x

Last Answer : Calculate the energy of hydrogen atom in the ground state given that the after Bohr orbit og hydrogen is ` ... electronic charge is `1.6xx10^(-19) C`.

Description : Red Laser light has a wavelength of a) 630.8 nm b) 630 cm c) 632.8 nm d) 639.9 nm

Last Answer : c) 632.8 nm

Description : Calculate the radius of the first Bohr orbit of a `He^(+)` ion and the binding energy of its electron in the ground state.

Last Answer : Calculate the radius of the first Bohr orbit of a `He^(+)` ion and the binding energy of its electron in the ground state.

Description : In hydrogen atom, the electron is making `6.6xx10^(15) rev//sec` around the nucleus in an orbit of radius `0.528 A`. The magnetic moment `(A-m^(2)) wi

Last Answer : In hydrogen atom, the electron is making `6.6xx10^(15) rev//sec` around the nucleus in an orbit of radius `0. ... ` C. `1xx10^(-23)` D. `1xx10^(-27)`

Description : In hydrogen atom, an electron is revolving in the orbit of radius `0.53 Å` with `6.6xx10^(15) rotations//second`. Magnetic field produced at the centr

Last Answer : In hydrogen atom, an electron is revolving in the orbit of radius `0.53 Å` with `6.6xx10^(15) rotations//second`. ... 5 Wb//m^(2)` D. `125 Wb/m^(2)`

Description : The de-Broglie wavelength of an electron moving in the nth Bohr orbit of radius ris given by

Last Answer : The de-Broglie wavelength of an electron moving in the nth Bohr orbit of radius ris given by A. `(2pir)/n` B. `npir` C. `(nr)/(2pi)` D. `(nr)/pi`

Description : The electrons in the outermost orbit of atom are: a) Valance electrons b) Static electrons c) Tightly bound d) Stationary

Last Answer : a) Valance electrons

Description : The speed of hydrogen electron in the nth orbit is given by vn = a) 2λke2 / nh b) 2πke2 / λh c) 2πke2 / nh d) 2πke2 / h

Last Answer : c) 2πke2

Description : The angular momentum J of the electron in a hydrogen atom is proportional to `n^(th)` power of r (radius of the orbit) where n is :-

Last Answer : The angular momentum J of the electron in a hydrogen atom is proportional to `n^(th)` power of r (radius of the orbit ... B. `-1` C. `(1)/(2)` D. None

Description : For Hydrogen atom, the allowed stationary orbits are those whose orbital angular momentum is equal to an integral multiple of h i.e., mvr = a) nh/2π b) nh x 2π c) nh / 2λ d) nh / 2πλ

Last Answer : a) nh/2π

Description : S.I unit of stress is: a) N/m b) N m c) Nm–2 d) Newton

Last Answer : c) Nm–2

Description : The unit Nm–2 is also called a) Coulomb b) Newton c) Pascal d) Ampere

Last Answer : c) Pascal

Description : One henry is equal to.......: a. VA/s b. Nm/A c. As/V d. Vs/A

Last Answer : d. Vs/A

Description : If the value of `E=-78.4 "kcal//mol"`, the order of the orbit in hydrogen atom is-

Last Answer : If the value of `E=-78.4 "kcal//mol"`, the order of the orbit in hydrogen atom is- A. 4 B. 3 C. 2 D. 1

Description : A hydrogen atom in ground state absorbs a photon of ultraviolet radiation of wavelength `50 nm` Assuming that the entire photon energy is taken up by

Last Answer : A hydrogen atom in ground state absorbs a photon of ultraviolet radiation of wavelength `50 nm` ... what kinetic energy will the electron be ejected?

Description : Calculate the speed of the electron in the first Bohr orbit given that `h=6.6xx10^(-34) Js, m=9.11xx10^(-31) kg` and `e=1.603xx10^(-19) C`.

Last Answer : Calculate the speed of the electron in the first Bohr orbit given that `h=6.6xx10^(-34) Js, m=9.11xx10^(-31) kg` and `e=1.603xx10^(-19) C`.

Description : A particle of mass `m` moves along a circular orbit in centrosymmetrical potential field `U(r )=kr^(2)//2`. Using the Bohr quantization condition, fin

Last Answer : A particle of mass `m` moves along a circular orbit in centrosymmetrical potential field `U(r ... orbital radii and energy levels to that particle.

Description : According to Bohr's theory, an electron in one Bohr stationary orbit can go to a higher stationary orbit (a) By emission of electromagnetic radiation (b) Without any absorption ... absorption of any electromagnetic radiation (d) With absorption of electromagnetic radiation of a particular frequency

Last Answer : Ans:(d)

Description : Calculate the radius of the first and second orbit of sodium atom `(Z=11)`. `(h=6.6xx10^(-34) J s, e=1.6xx10^(-19) C` and `m=9.1xx10^(-31) kg.)`

Last Answer : Calculate the radius of the first and second orbit of sodium atom `(Z=11)`. `(h=6.6xx10^(-34) J s, e=1.6xx10^(-19) C` and `m=9.1xx10^(-31) kg.)`

Description : The electron with change `(q=1.6xx10^(-19)C)` moves in an orbit of radius `5xx10^(-11)`m with a speed of `2.2xx10^(6)ms^(-1)`, around an atom. The equ

Last Answer : The electron with change `(q=1.6xx10^(-19)C)` moves in an orbit of radius `5xx10^(-11)`m with a speed of `2. ... -3)A` C. `1.12xx10^(-9)A` D. `1.12A`

Description : An α particle moves perpendicular to a constant magnetic field of strength 1.2 T in a circular path of radius 0.7 m. The speed of α particle in ms-1 is ______________ a) 2.7 × 107 b) 2.6 × 107 c) 3.2 × 107 d) 2.0 × 107

Last Answer : a) 2.7 × 107

Description : Please ripley me due to emergency

Last Answer : To calculate the flux density in the ring, you need to use the following formula: B = (μ * I * N) / (2 * π * r) where: B is the flux density in the ring (in teslas) μ is the relative permeability ... 2 * π * 0.127 m) = 0.53 T So the flux density in the ring would be approximately 0.53 teslas.

Description : Which of the synchroscope illustrations depicts the appropriate direction of rotation and position for closing the circuit breaker when paralleling AC generators? EL-0053 A. A B. B C. C D. D

Last Answer : Answer: D

Description : According to Bohr's theory of hydrogen atom, the angular momentum of the electron in the fourth orbit is given by (a) h/2p (b) 4h/p (c) h/p (d) 2h/p

Last Answer : Ans:(d)

Description : The ionisation energy of hydrogen atom in the ground state is x KJ. The energy required for an electron to jump from 2nd orbit to 3rd orbit is?

Last Answer : 5x/36

Description : For the hydrogen atom, which series describes electron transitions to the N = 2 orbit? Is it the: w) Lyman series x) Paschen series y) Balmer series z) Pfund series

Last Answer : ANSWER: Y -- BALMER SERIES

Description : For the hydrogen atom, which series describes electron transitions to the N=1 orbit, the lowest energy electron orbit? Is it the: w) Lyman series x) Balmer series y) Paschen series z) Pfund series

Last Answer : ANSWER: W -- LYMAN SERIES

Description : An electron moves in a circular orbit of radius 10 cm with a constant speed of `4.0xx10^(6) ms^(-1)`. Determine the electric current at a point on the

Last Answer : An electron moves in a circular orbit of radius 10 cm with a constant speed of `4.0xx10^(6 ... Determine the electric current at a point on the orbit.

Description : The sag of 50 m tape weighing 4 kg under 5 kg tension is roughly  (A) 0.043 m  (B) 0.053 m  (C) 0.063 m  (D) 0.083 m 

Last Answer : (D) 0.083 m 

Description : Given the following data pairs (x, y), find the regression equation. (1, 1.24), (2, 5.23), (3, 7.24), (4, 7.60), (5, 9.97), (6, 14.31), (7, 13.99), (8, 14.88), (9, 18.04), (10, 20.70) a. y = 0.490 x - 0.053 b. y = 2.04 x c. y = 1.98 x + 0.436 d. y = 0.49 x

Last Answer : c. y = 1.98 x + 0.436

Description : In a steam condenser, the partial pressure of steam and air are 0.06 bar and 0.007 bar respectively. The condenser pressure is (A) 0.007 bar (B) 0.053 bar (C) 0.06 bar (D) 0.067 bar

Last Answer : (D) 0.067 bar

Description : The volume of a bag of cement in cubic meters is about a) 0.035* b) 0.35 c) 0.53 d) .053

Last Answer : a) 0.035*

Description : What was Neils Bohr major contribute to the atom?

Last Answer : Need answer

Description : The idea that electrons revolved in orbits around the nucleus of an atom without radiating energy away from the atom was postulated by: w) Thompson x) Bohr y) Rutherford z) Einstein

Last Answer : ANSWER: X -- BOHR

Description : The force between two long parallel conductors is inversely proportional to (a) radius of conductors (b) current in one conductor (c) product of current in two conductors (d) distance between the conductors

Last Answer : (d) distance between the conductors

Description : A proton moves in a uniform magnetic field in a circular path of radius R. If the energy of proton is doubled then the new radius becomes a) R √2 b) 2R c) R 2 d) √2 R

Last Answer : d) √2 R

Description : Specific resistance of a wire a. will depend on its length b. will depend on its radius c. will depend on the type of material of the wire d. will depend on none of the above

Last Answer : c. will depend on the type of material of the wire

Description : In the phenomenon of Laser production, atom can reside in the meta stable state for a) ~ 10-3 s b) ~ 10-8 s c) ~ 10-4 s d) ~ 10-10 s

Last Answer : a) ~ 10-3 s

Description : In the phenomenon of Laser production, atom can reside in the excited state only for a) 10-6 s b) 10-7 s c) 10-8 s d) 10-9 s

Last Answer : c) 10-8 s

Description : Electron can exist in the atom but outside the nucleus because a) speed of electron is equal to the speed of light b) speed of electron is more than speed of light c) speed of electron is less than speed of light d) None of these

Last Answer : c) speed of electron is less than speed of light

Description : The emission in which the atom emits a photon of energy hf = E2 – E1 , in any arbitrary direction is a) Spontaneous emission b) stimulated emission c) induced emission d) both a & c

Last Answer : d) both a & c

Description : The incident photon absorbed by an atom in the ground state E1, thereby leaving the atom in the excited state E2 , is a) spontaneous absorption b) stimulated absorption c) induced absorption d) both b & c

Last Answer : d) both b & c

Description : A smallest three dimensional part of a crystal lattice is called. a) A particle b) A molecules c) A unit cell d) An atom

Last Answer : c) A unit cell