Though the effective depth of a T-beam is the distance between the top compression edge to the
centre of the tensile reinforcement, for heavy loads, it is taken as
(A) 1/8th of the span
(B) 1/10th of the span
(C) 1/12th of the span
(D) 1/16th of the span

1 Answer

Answer :

Answer: Option C

Related questions

Description : In a singly reinforced beam, the effective depth is measured form the compression edge to the (a) Tensile edge (b) Centre of tensile reinforcement (c) Neutral axis of the beam (d) All of the above

Last Answer : (b) Centre of tensile reinforcement

Description : The effective depth of a T-beam is the distance between the (a) Centre of the flange and the top of the tensile reinforcement (b) Top of the flange and the centre of the tensile ... centre of the tensile reinforcement (d) Centre of the flange and the bottom centre of the tensile reinforcement

Last Answer : (b) Top of the flange and the centre of the tensile reinforcement

Description : In a singly reinforced beam, the effective depth is measured from its compression edge to (A) Tensile edge (B) Tensile reinforcement (C) Neutral axis of the beam (D) Longitudinal central axis

Last Answer : Answer: Option B

Description : In a T-beam, the vertical distance between the bottom of the flange and the centre of the tensile reinforcement is (a) Breadth of flange (b) Thickness of flange (c) Breadth of slab (d) Depth of rib

Last Answer : (d) Depth of rib

Description : The breadth of the flange of a T-beam is (a) 1/3rd of the effective span of the T-beam (b) Twelve times the depth of slab plus breadth of rib. (c) Centre to centre distance between the adjacent beam. (d) Least of (a) , (b) or (c)

Last Answer : (d) Least of (a) , (b) or (c)

Description : If depth of slab is 10 cm, width of web 30 cm, depth of web 50 cm, centre to centre distance of beams 3 m, effective span of beams 6 m, the effective flange width of the beam, is (A) 200 cm (B) 300 cm (C) 150 cm (D) 100 cm

Last Answer : Answer: Option C

Description : In a doubly reinforced beam , steel reinforcement is provided in a (a) Tensile zone (b) Compression zone (c) Either (a) & (b) (d) Both (a) & (b)

Last Answer : (d) Both (a) & (b)

Description : A simply supported beam carrying a uniformly distributed load over its whole span, is propped at  the centre of the span so that the beam is held to the level of the end supports. The reaction of  ... B) 3/8th the distributed load  (C) 5/8th the distributed load  (D) Distributed load 

Last Answer : (C) 5/8th the distributed load 

Description : In jack arch floor, the rise is kept (A) 1/6th of the span (B) 1/8th of the span (C) 1/10th of the span (D) 1/12th of the span

Last Answer : Answer: Option D

Description : For the design of a simply supported T-beam the ratio of the effective span to the overall depth of the beam is limited to (A) 10 (B) 15 (C) 20 (D) 25

Last Answer : Answer: Option C

Description : The ratio of the length and depth of a simply supported rectangular beam which experiences  maximum bending stress equal to tensile stress, due to same load at its mid span, is  (A) 1/2  (B) 2/3  (C) 1/4  (D) 1/3

Last Answer : (B) 2/3 

Description : If the maximum shear stress at the end of a simply supported R.C.C. beam of 16 m effective span is 10 kg/cm2 , the length of the beam having nominal reinforcement, is (A) 8 cm (B) 6 m (C) 8 m (D) 10 m

Last Answer : Answer: Option C

Description : The section modulus of a rectangular light beam 25 metres long is 12.500 cm3 . The beam is simply supported at its ends and carries a longitudinal axial tensile load of 10 tonnes in addition to a point load of ... 13.33 kg/cm2 compressive (C) 26.67 kg/cm2 tensile (D) 26.67 kg/cm2 compressive

Last Answer : (C) 26.67 kg/cm2 tensile

Description : The width of the flange of a T-beam should be less than (A) One-third of the effective span of the T-beam (B) Distance between the centres of T-beam (C) Breadth of the rib plus twelve times the thickness of the slab (D) Least of the above

Last Answer : Answer: Option D

Description : In the design of a front counterfort in a counterfort retaining wall, the main reinforcement is provided on (i) Bottom face near counterfort (ii) Top face near counterfort (iii) Bottom face near centre of span (iv) Top ... ) (B) Only (ii) (C) Both (i) and (iv) (D) Both (ii) and (iii)

Last Answer : Answer: Option C

Description : An R.C.C. beam of 25 cm width and 50 cm effective depth has a clear span of 6 metres and carries a U.D.L. of 3000 kg/m inclusive of its self weight. If the lever arm constant for the section is 0.865, the maximum intensity ... , is (A) 8.3 kg/cm2 (B) 7.6 kg/cm2 (C) 21.5 kg/cm2 (D) 11.4 kg/cm2

Last Answer : Answer: Option A

Description : A continuous beam shall be deemed to be a deep beam if the ratio of effective span to overall depth, is (A) 2.5 (B) 2.0 (C) Less than 2 (D) Less than 2.5

Last Answer : Answer: Option A

Description : A continuous beam is deemed to be a deep beam when the ratio of effective span to overall depth (1/D) is less than (A) 1.5 (B) 2.0 (C) 2.5 (D) 3.0

Last Answer : Answer: Option C

Description : For a simply supported beam of span 15 m, the minimum effective depth to satisfy the vertical deflection limits should be (A) 600 mm (B) 750 mm (C) 900 mm (D) More than 1 m

Last Answer : Answer: Option B

Description : A simply supported beam 6 m long and of effective depth 50 cm, carries a uniformly distributed load 2400 kg/m including its self weight. If the lever arm factor is 0.85 and permissible tensile stress of steel is 1400 kg/cm2 ... area of steel required, is (A) 14 cm (B) 15 cm2 (C) 16 cm2 (D) 17 cm

Last Answer : Answer: Option C

Description : A singly reinforced beam has breadth b, effective depth d, depth of neutral axis n and critical neutral axis n1. If fc and ft are permissible compressive and tensile stresses, the moment to resistance of the beam, is (A) bn (fc ... (B) Atft (d - n/3) (C) ½ n1 (1 - n1/3) cbd² (D) All the above

Last Answer : Answer: Option D

Description : If K is a constant depending upon the ratio of the width of the slab to its effective span l, x is the distance of the concentrated load from the nearer support, bw is the width of the area of contact of the concentrated load measured ... ) Kx (1 - x/l) + bw (C) Kx (1 + x/l) + bw (D) All the above

Last Answer : Answer: Option B

Description : In slabs the Maximum horizontal distance between parallel main reinforcement should not exceed i.Three times effective depth ii Five times effective depth iii 300mm iv 450 mm [ A ] i and iii [ B ] i and iv [ C ] ii and iii [ D ] ii and iv

Last Answer : [ A ] i and iii

Description : What is the distance away from midspan of a plastic hinge if developing in a simply supported beam of rectangular cross-section and span 6 m, subjected to a point load at the centre? (a) Zero (b) 1 m (c) 2 m (d) 3 m

Last Answer : (a) Zero

Description : The maximum compressive stress at the top of a beam is 1600 kg/cm2 and the corresponding tensile stress at its bottom is 400 kg/cm2 . If the depth of the beam is 10 cm, the neutral axis from the top, is (A) 2 cm (B) 4 cm (C) 6 cm (D) 8 cm

Last Answer : (D) 8 cm

Description : A cast iron T section beam is subjected to pure bending. For maximum compressive stress to be  three times the maximum tensile stress, centre of gravity of the section from flange side is  (A) h/4  (B) h/3  (C) h/2  (D) 2/3 h

Last Answer : (A) h/4 

Description : Pick up the incorrect statement from the following: Tensile reinforcement bars of a rectangular beam (A) Are curtailed if not required to resist the bending moment (B) Are bent up at suitable ... to serve as shear reinforcement (D) Are maintained at bottom to provide at least local bond stress

Last Answer : Answer: Option C

Description : The minimum strain at failure in the tensile reinforcement (Fy = 400 MPa) of RCC beam as per limit state method is (a) 0.0020 (b) 0.0028 (c) 0.0037 (d) 0.0045

Last Answer : (c) 0.0037

Description : A simply supported beam carries a uniformly distributed load over the whole span.The deflection at the centre is y.If the distributed load per unit length is doubled and also depth of beam is doubled ,then the deflection at the centre would be a.2y b.4y c.y/2 d.y/4.

Last Answer : d.y/4.

Description : A simply supported beam is of rectangular section.It carries a uniformly distributed load over the whole span.The deflection at the centre is y.If the depth of beam is doubled ,the deflection at the centre would be a.2y b.4y c.y/2 d.y/8.

Last Answer : d.y/8.

Description : If the maximum shear stress at the end of a simply supported R.C.C. beam of 6 m effective span is 10 kg/cm2 , the share stirrups are provided for a distance from either end where, is (A) 50 cm (B) 100 cm (C) 150 cm (D) 200 cm

Last Answer : Answer: Option C

Description : If L is the effective span of a R.C.C. beam which is subjected to maximum shear qmax at the ends, the distance from either end over which stirrups for the shear, are provided, is (A) (L/2) (1 - 3/qmax) (B) (L/3) (1 - 5/qmax) (C) (L/2) (1 - 5/qmax) (D) (L/2) (1 - 2/qmax)

Last Answer : Answer: Option C

Description : The width of the flange of a L-beam, should be less than (A) One-sixth of the effective span (B) Breadth of the rib + four times thickness of the slab (C) Breadth of the rib + half clear distance between ribs (D) Least of the above

Last Answer : Answer: Option D

Description : The effective span of a simply supported slab, is (A) Distance between the centres of the bearings (B) Clear distance between the inner faces of the walls plus twice the thickness of the wall (C) Clear span plus effective depth of the slab (D) None of these

Last Answer : Answer: Option B

Description : The critical section for finding maximum bending moment for footing under masonry wall is located (A) At the middle of the wall (B) At the edge of the wall (C) Halfway between the middle and edge of the wall (D) At a distance equal to effective depth of footing from the edge of the wall

Last Answer : Answer: Option C

Description : The effective span of a simply supported slab is (a) Distance between the centers of the bearings (b) Clear distance between the inner faces of the walls plus twice he thickness of the slab. (c) Cleat spa plus effective depth of the slab. (d) All the above

Last Answer : (c) Cleat spa plus effective depth of the slab.

Description : Shear resistance of concrete in a reinforced concrete beam is dependent on (a) Tension reinforcement in the beam (b) Compression reinforcement in the beam (c ) Shear reinforcement in the beam (d) None of the reinforcements in the beam

Last Answer : (a) Tension reinforcement in the beam

Description : When a series of wheel loads crosses a simply supported girder, the maximum bending moment under any given wheel load occurs when (A) The centre of gravity of the load system is midway between the centre of ... the centre of span and the centre of gravity of the load system (D) None of the above

Last Answer : (B) The centre of span is midway between the centre of gravity of the load system and the wheel load under consideration

Description : The maximum bending moment due to a train of wheel loads on a simply supported girder (A) Always occurs at centre of span (B) Always occurs under a wheel load (C) Never occurs under a wheel load (D) None of the above

Last Answer : (B) Always occurs under a wheel load

Description : The ratio of the length and diameter of a simply supported uniform circular beam which  experiences maximum bending stress equal to tensile stress due to same load at its mid span, is  (A) 1/8  (B) 1/4  (C) 1/2  (D) 1/3 

Last Answer : (C) 1/2 

Description : Side face reinforcement shall be provided in the beam when depth of the web in a beam exceeds (A) 50 cm (B) 75 cm (C) 100 cm (D) 120 cm

Last Answer : Answer: Option B

Description : Side face reinforcement is provided when the depth of beam exceeds [ A ] 250 mm [ B ] 450 mm [ C ] 550 mm [ D ] 750 mm

Last Answer : [ D ] 750 mm

Description : A simply supported uniform rectangular bar breadth b, depth d and length L carries an isolated  load W at its mid-span. The same bar experiences an extension e under same tensile load. The  ratio of the maximum deflection to the ... (A) L/d (B) L/2d (C) (L/2d)² (D) (L/3d)²

Last Answer : (C) (L/2d)

Description : Top bars are extended to the projecting parts of the combined footing of two columns Ldistance apart for a distance of (A) 0.1 L from the outer edge of column (B) 0.1 L from the centre edge of column (C) Half the distance of projection (D) One-fourth the distance of projection

Last Answer : Answer: Option B

Description : The application of elastic theory to the beams is based on the assumption that (a) At any cross-section, plane sections before bending remain plane after bending (b) All tensile stresses are taken ... reinforcement is free from initial stresses when it is embedded in concrete. (d) All of the above

Last Answer : (d) All of the above

Description : Grillage foundation (A) Is used to transfer heavy structural loads from steel columns to a soil having low bearing capacity (B) Is light and economical (C) Does not require deep cutting as the required base area with required pressure intensity is obtained at a shallow depth (D) All the above

Last Answer : Answer: Option D

Description : In a doubly-reinforced beam if and is the effective depth and is depth of critical neutral axis, the following relationship holds good (A) mc/t = n/(d - n) (B) (m + c)/t = n/(d + n) (C) (t + c)/n = (d + n)/n D) mc/t = (d - n)/t

Last Answer : Answer: Option A

Description : The effective depth of a singly reinforced rectangular beam is 300mm. the section is over-reinforced and the neutral axis is 120mm below the top. If the maximum stress attained by concrete is 5N/mn2 and the modular ratio ... in the steel will (a) 130N/mm2 (b) 135N/mm2 (c) 160N/mm2 (d) 180N/mm2

Last Answer : (b) 135N/mm2

Description : When a simply supported beam is loaded with a point load at the centre, the maximum tensile stress is developed on the (a) Top fibre (b) Bottom fibre (c) Neutral axis (d) None of these

Last Answer : (b) Bottom fibre

Description : In cement concrete pavements, tensile stress is due to: (A) Bending or deflection under wheel loads (B) Difference in temperature of the top and bottom of pavement (C) Contraction of slab during falling temperature (D) All the above

Last Answer : Answer: Option D