The section modulus of a rectangular light beam 25 metres long is 12.500 cm3
. The beam is simply
supported at its ends and carries a longitudinal axial tensile load of 10 tonnes in addition to a
point load of 4 tonnes at the centre. The maximum stress in the bottom most fibre at the mid span
section, is
(A) 13.33 kg/cm2
 tensile
(B) 13.33 kg/cm2
 compressive
(C) 26.67 kg/cm2
 tensile
(D) 26.67 kg/cm2
 compressive

1 Answer

Answer :

(C) 26.67 kg/cm2
 tensile

Related questions

Description : A 8 metre long simply supported rectangular beam which carries a distributed load 45 kg/m. experiences a maximum fibre stress 160 kg/cm2 . If the moment of inertia of the beam is 640 cm4 , the overall depth of the beam is (A) 10 cm (B) 12 cm (C) 15 cm (D) 18 cm

Last Answer : (A) 10 cm

Description : A beam of uniform rectangular section 200 mm wide and 300mm deep is simply supported at its ends.It carries a uniformly distributed load of 9KN/m run over the entire span of 5m.If E=1×104 N/mm2, what is the maximum deflection? a.14.26 mm b.17.28 mm c.18.53 mm d.16.27 mm.

Last Answer : d.16.27 mm.

Description : A simply supported wooden beam 150 cm long and having a cross section 16 cm × 24 cm carries a  concentrated load, at the centre. If the permissible stress ft = 75 kg/cm2  and fs= 10 kg/cm2  the safe  load is  (A) 3025 kg  (B) 3050 kg  (C) 3075 kg  (D) 3100 kg 

Last Answer : (C) 3075 kg 

Description : The ratio of the length and depth of a simply supported rectangular beam which experiences  maximum bending stress equal to tensile stress, due to same load at its mid span, is  (A) 1/2  (B) 2/3  (C) 1/4  (D) 1/3

Last Answer : (B) 2/3 

Description : While testing a cast iron beam (2.5 cm × 2.5 cm) in section and a metre long simply supported at  the ends failed when a 100 kg weight is applied at the centre. The maximum stress induced is:  (A) 960 kg/cm2 (B) 980 kg/cm2 (C) 1000 kg/cm2 (D) 1200 kg/c

Last Answer : (A) 960 kg/cm

Description : A simply supported beam 6 m long and of effective depth 50 cm, carries a uniformly distributed load 2400 kg/m including its self weight. If the lever arm factor is 0.85 and permissible tensile stress of steel is 1400 kg/cm2 ... area of steel required, is (A) 14 cm (B) 15 cm2 (C) 16 cm2 (D) 17 cm

Last Answer : Answer: Option C

Description : An R.C.C. beam of 25 cm width and 50 cm effective depth has a clear span of 6 metres and carries a U.D.L. of 3000 kg/m inclusive of its self weight. If the lever arm constant for the section is 0.865, the maximum intensity ... , is (A) 8.3 kg/cm2 (B) 7.6 kg/cm2 (C) 21.5 kg/cm2 (D) 11.4 kg/cm2

Last Answer : Answer: Option A

Description : A simply supported uniform rectangular bar breadth b, depth d and length L carries an isolated  load W at its mid-span. The same bar experiences an extension e under same tensile load. The  ratio of the maximum deflection to the ... (A) L/d (B) L/2d (C) (L/2d)² (D) (L/3d)²

Last Answer : (C) (L/2d)

Description : When a simply supported beam is loaded with a point load at the centre, the maximum tensile stress is developed on the (a) Top fibre (b) Bottom fibre (c) Neutral axis (d) None of these

Last Answer : (b) Bottom fibre

Description : A simply supported beam is of rectangular section.It carries a uniformly distributed load over the whole span.The deflection at the centre is y.If the depth of beam is doubled ,the deflection at the centre would be a.2y b.4y c.y/2 d.y/8.

Last Answer : d.y/8.

Description : A steel bar 20 mm in diameter simply-supported at its ends over a total span of 40 cm carries a  load at its centre. If the maximum stress induced in the bar is limited to N/mm2, the bending  strain energy stored in the ... (A) 411 N mm  (B) 511 N mm  (C) 611 N mm  (D) 711 N mm 

Last Answer : (C) 611 N mm 

Description : The ratio of the length and diameter of a simply supported uniform circular beam which  experiences maximum bending stress equal to tensile stress due to same load at its mid span, is  (A) 1/8  (B) 1/4  (C) 1/2  (D) 1/3 

Last Answer : (C) 1/2 

Description : A simply supported beam of span L carries a concentrated load W at its mid-span. The maximum  bending moment M is  (A) WL/2  (B) WL/4  (C) WL/8  (D) WL/12

Last Answer : (B) WL/4

Description : A beam 3m long simply supported at its ends ,is carrying a point load W at the centre.If the slope at the ends of the beam should not exceed 10,find the deflection at the centre of beam? a.18.41 mm b.13.45 mm c.17.45 mm d.21.67 mm.

Last Answer : c.17.45 mm

Description : What is the distance away from midspan of a plastic hinge if developing in a simply supported beam of rectangular cross-section and span 6 m, subjected to a point load at the centre? (a) Zero (b) 1 m (c) 2 m (d) 3 m

Last Answer : (a) Zero

Description : A simply supported beam A carries a point load at its mid span. Another identical beam B carries  the same load but uniformly distributed over the entire span. The ratio of the maximum  deflections of the beams A and B, will be  (A) 2/3  (B) 3/2  (C) 5/8  (D) 8/5 

Last Answer : (D) 8/5 

Description : If the maximum shear stress at the end of a simply supported R.C.C. beam of 6 m effective span is 10 kg/cm2 , the share stirrups are provided for a distance from either end where, is (A) 50 cm (B) 100 cm (C) 150 cm (D) 200 cm

Last Answer : Answer: Option C

Description : If the maximum shear stress at the end of a simply supported R.C.C. beam of 16 m effective span is 10 kg/cm2 , the length of the beam having nominal reinforcement, is (A) 8 cm (B) 6 m (C) 8 m (D) 10 m

Last Answer : Answer: Option C

Description : The maximum compressive stress at the top of a beam is 1600 kg/cm2 and the corresponding tensile stress at its bottom is 400 kg/cm2 . If the depth of the beam is 10 cm, the neutral axis from the top, is (A) 2 cm (B) 4 cm (C) 6 cm (D) 8 cm

Last Answer : (D) 8 cm

Description : A simply supported rolled steel joist 8 m long carries a uniformly distributed load over it span so  that the maximum bending stress is 75 N/mm². If the slope at the ends is 0.005 radian and the  value of E = 0.2 ... joist, is  (A) 200 mm  (B) 250 mm  (C) 300 mm  (D) 400 mm 

Last Answer : (D) 400 mm 

Description : In a simply supported beam loaded with U.D.L over the whole section, the bending stress is …………. at top and ………….. at bottom. (a) Compressive, tensile (b) Tensile, compressive (c) Tensile, zero (d) Compressive, zero

Last Answer : (a) Compressive, tensile

Description : When a rectangular beam is loaded transversely, the maximum compressive stress develops on (A) Bottom fibre (B) Top fibre (C) Neutral axis (D) Every cross-section

Last Answer : (B) Top fibre

Description : An R.C.C. beam of 6 m span is 30 cm wide and has a lever arm of 55 cm. If it carries a U.D.L. of 12 t per m and allowable shear stress is 5 kg/cm2 , the beam (A) Is safe in shear (B) Is safe with stirrups (C) Is safe with stirrups and inclined bars (D) Needs revision of section

Last Answer : Answer: Option D

Description : A simply supported beam of span carries a uniformly distributed load . The maximum bending moment is (A) WL/2 (B) WL/4 (C) WL/8 (D) WL/12

Last Answer : (C) WL/8

Description : If a rectangular beam measuring 10 × 18 × 400 cm carries a uniformly distributed load such that the bending stress developed is 100 kg/cm2 . The intensity of the load per metre length, is (A) 240 kg (B) 250 kg (C) 260 kg (D) 270 kg

Last Answer : (B) 250 kg

Description : At any point of a beam, the section modulus may be obtained by dividing the moment of inertia of  the section by  (A) Depth of the section  (B) Depth of the neutral axis  (C) Maximum tensile stress at the section  (D) Maximum compressive stress at the section

Last Answer : (B) Depth of the neutral axis 

Description : An R.C.C beam of 25 cm width has a clear span of 5 metres and carries a U.D.L. of 2000 kg/m inclusive of its self weight. If the lever arm of the section is 45 cm., the beam is ( ... shear (B) Is safe with stirrups (C) Is safe with stirrups and inclined members (D) Needs revision of the section

Last Answer : Answer: Option A

Description : A simply supported beam carries a uniformly distributed load over the whole span.The deflection at the centre is y.If the distributed load per unit length is doubled and also depth of beam is doubled ,then the deflection at the centre would be a.2y b.4y c.y/2 d.y/4.

Last Answer : d.y/4.

Description : Maximum deflection of a (A) Cantilever beam carrying a concentrated load W at its free end is WL3 /3EI (B) Simply supported beam carrying a concentrated load W at mid-span is WL3 /48EI (C) Cantilever beam, carrying a uniformly distributed load over span is WL3 /8EI (D) All the above

Last Answer : (D) All the above

Description : A steel rod 1 metre long having square cross section is pulled under a tensile load of 8 tonnes. The  extension in the rod was 1 mm only. If Esteel = 2 × 106  kg/cm2 , the side of the rod, is  (A) 1 cm  (B) 1.5 cm  (C) 2 cm  (D) 2.5 cm 

Last Answer : (C) 2 cm 

Description : A uniformly distributed load of 20 kN/m acts on a simply supported beam of rectangular cross section of width 20 mm and depth 60 mm. What is the maximum bending stress acting on the beam of 5m? a. 5030 Mpa b. 5208 Mpa c. 6600 Mpa d. Insufficient data

Last Answer : b. 5208 Mpa

Description : The maximum deflection of  (A) A simply supported beam carrying a uniformly increasing load from either end and having  the apex at the mid span is WL3 /60EI (B) A fixed ended beam ... ended beam carrying a concentrated load at the mid span is WL3 /192EI (D) All the above 

Last Answer : (D) All the above 

Description : The maximum bending moment due to a moving load on a simply supported beam, occurs (A) At the mid span (B) At the supports (C) Under the load (D) Anywhere on the beam

Last Answer : (C) Under the load

Description : A rolled steel joist is simply supported at its ends and carries a uniformly distributed load which  causes a maximum deflection of 10 mm and slope at the ends of 0.002 radian. The length of the  joist will be,  (A) 10 m  (B) 12 m  (C) 14 m  (D) 16 m 

Last Answer : (D) 16 m 

Description : The main reason for providing number of reinforcing bars at a support in a simply supported beam is to resist in that zone (A) Compressive stress (B) Shear stress (C) Bond stress (D) Tensile stress

Last Answer : Answer: Option C

Description : The length of a column, having a uniform circular cross-section of 7.5 cm diameter and whose ends are hinged, is 5 m. If the value of E for the material is 2100 tonnes/cm2 , the permissible maximum crippling load will be (A) 1.288 tonnes (B) 12.88 (C) 128.8 tonnes (D) 288.0

Last Answer : (B) 12.88

Description : The maximum deflection of a simply supported beam of span L, carrying an isolated load at the  centre of the span; flexural rigidity being EI, is  (A) WL3 /3EL (B) WL3 /8EL (C) WL3 /24EL (D) WL3 /48EL

Last Answer : (D) WL3 /48EL

Description : A short, hollow cast iron cylinder with a wall thickness of 1 cm is to carry a compressive load of 10 tonnes. If the working stress in compression is 800 kg/cm2, the outside diameter of the cylinder should not be less than a) 0.5cm b) 5 cm c) 2.5cm d) 4.5 cm

Last Answer : b) 5 cm

Description : If a three hinged parabolic arch carries a uniformly distributed load on its entire span, every section of the arch resists. (A) Compressive force (B) Tensile force (C) Shear force (D) Bending moment

Last Answer : (A) Compressive force

Description : In case of a simply supported rectangular beam of span L and loaded with a central load W, the  length of elasto-plastic zone of the plastic hinge, is  (A) L/2  (B) L/3  (C) L/4  (D) L/5 

Last Answer : (B) L/3 

Description : For a simply supported beam of span L, with point load W at the centre, the maximum B.M. will be (a) WL (b) WL/2 (c) WL/4 (d) WL/8

Last Answer : (c) WL/4

Description : If the permissible compressive and tensile stresses in a singly reinforced beam are 50 kg/cm2 and 1400 kg/cm2 respectively and the modular ratio is 18, the percentage area At of the steel required for an economic section, is (A) 0.496 % (B) 0.596 % (C) 0.696 % (D) 0.796 %

Last Answer : Answer: Option C

Description : A rectangular beam 20 cm wide is subjected to a maximum shearing force of 10,000 kg, the corresponding maximum shearing stress being 30 kg/cm2 . The depth of the beam is (A) 15 cm (B) 20 cm (C) 25 cm (D) 30 cm

Last Answer : (C) 25 cm

Description : If the tendon is placed at an eccentricity e below the centroidal axis of the longitudinal axis of a rectangular beam (sectional modulus Z and stressed load P in tendon) the stress at the extreme top edge (A) Is ... by PZ/e (B) Is increased by Pe/Z (C) Is decreased by Pe/Z (D) Remains unchanged

Last Answer : Answer: Option C

Description : A cast iron T section beam is subjected to pure bending. For maximum compressive stress to be  three times the maximum tensile stress, centre of gravity of the section from flange side is  (A) h/4  (B) h/3  (C) h/2  (D) 2/3 h

Last Answer : (A) h/4 

Description : A simply supported beam carrying a uniformly distributed load over its whole span, is propped at  the centre of the span so that the beam is held to the level of the end supports. The reaction of  ... B) 3/8th the distributed load  (C) 5/8th the distributed load  (D) Distributed load 

Last Answer : (C) 5/8th the distributed load 

Description : A simply supported beam AB is subjected to a concentrated load at C, the centre of the span. The area of the SF diagram from A to C will give a) BM at C b) Load at S c) SF at C d)Difference between BM values at A and C

Last Answer : d)Difference between BM values at A and C

Description : In case of a simply supported I-section beam of span L and loaded with a central load W, the  length of elasto-plastic zone of the plastic hinge, is  (A) L/2  (B) L/3  (C) L/4  (D) L/5 

Last Answer : (D) L/5 

Description : If a steel rod of 20 mm diameter and 5 metres long elongates by 2.275 mm when subjected to an  axial pull of 3000 kg, the stress developed, is  (A) 9.5541 kg/cm2 (B) 95.541 kg/cm2 (C) 955.41 kg/cm2 (D) 9554.1 kg/cm

Last Answer : (C) 955.41 kg/cm2

Description : If a steel rod of 20 mm diameter and 5 metres long elongates by 2.275 mm when subjected to an  axial pull of 3000 kg, the stress developed, is  (A) 9.5541 kg/cm2 (B) 95.541 kg/cm2 (C) 955.41 kg/cm2 (D) 9554.1 kg/cm

Last Answer : (C) 955.41 kg/cm2