A vector is said to be solenoidal when its
a) Divergence is zero
b) Divergence is unity
c) Curl is zero
d) Curl is unity

1 Answer

Answer :

a) Divergence is zero

Related questions

Description : Identify the nature of the field, if the divergence is zero and curl is also zero. a) Solenoidal, irrotational b) Divergent, rotational c) Solenoidal, irrotational d) Divergent, rotational

Last Answer : c) Solenoidal, irrotational

Description : A field has zero divergence and it has curls. The field is said to be a) Divergent, rotational b) Solenoidal, rotational c) Solenoidal, irrotational d) Divergent, irrotational

Last Answer : b) Solenoidal, rotational

Description : The divergence of curl of a vector is zero. State True or False. a) True b) False

Last Answer : a) True

Description : Find whether the vector is solenoidal, E = yz i + xz j + xy k a) Yes, solenoidal b) No, non-solenoidal c) Solenoidal with negative divergence d) Variable divergence

Last Answer : a) Yes, solenoidal

Description : Divergence theorem computes to zero for a solenoidal function. State True/False. a) True b) False

Last Answer : a) True

Description : Curl of gradient of a vector is a) Unity b) Zero c) Null vector d) Depends on the constants of the vector

Last Answer : c) Null vector

Description : The magnetic field intensity is said to be a) Divergent b) Curl free c) Solenoidal d) Rotational

Last Answer : c) Solenoidal

Description : Divergence of gradient of a vector function is equivalent to a) Laplacian operation b) Curl operation c) Double gradient operation d) Null vector

Last Answer : a) Laplacian operation

Description : The relation between vector potential and field strength is given by a) Gradient b) Divergence c) Curl d) Del operator

Last Answer : a) Gradient

Description : The del operator is called as a) Gradient b) Curl c) Divergence d) Vector differential operator

Last Answer : d) Vector differential operator

Description : Which of the following are not vector functions in Electromagnetic? a) Gradient b) Divergence c) Curl d) There is no non- vector functions in Electromagnetics

Last Answer : d) There is no non- vector functions in Electromagnetics

Description : Ampere law states that, a) Divergence of H is same as the flux b) Curl of D is same as the current c) Divergence of E is zero d) Curl of H is same as the current density

Last Answer : d) Curl of H is same as the current density

Description : Determine the divergence of F = 30 i + 2xy j + 5xz 2 k at (1,1,-0.2) and state the nature of the field. a) 1, solenoidal b) 0, solenoidal c) 1, divergent d) 0, divergent

Last Answer : b) 0, solenoidal

Description : For static fields, the curl of E will be a) Rotational b) Irrotational c) Solenoidal d) Divergent

Last Answer : b) Irrotational

Description : In a medium other than air, the electric flux density will be a) Solenoidal b) Curl free c) Irrotational d) Divergent

Last Answer : d) Divergent

Description : Find the value of Stoke’s theorem for A = x i + y j + z k. The state of the function will be a) Solenoidal b) Divergent c) Rotational d) Curl free

Last Answer : d) Curl free

Description : When a vector is irrotational, which condition holds good? a) Stoke’s theorem gives non-zero value b) Stoke’s theorem gives zero value c) Divergence theorem is invalid d) Divergence theorem is valid

Last Answer : b) Stoke’s theorem gives zero value

Description : The curl of a curl of a vector gives a a) Scalar b) Vector c) Zero value d) Non zero value

Last Answer : b) Vector

Description : The curl of gradient of a vector is non-zero. State True or False. a) True b) False

Last Answer : b) False

Description : The non existence of the magnetic monopole is due to which operation? a) Gradient b) Divergence c) Curl d) Laplacian

Last Answer : b) Divergence

Description : The charge density of a electrostatic field is given by a) Curl of E b) Divergence of E c) Curl of D d) Divergence of D

Last Answer : d) Divergence of D

Description : Gauss theorem uses which of the following operations? a) Gradient b) Curl c) Divergence d) Laplacian

Last Answer : c) Divergence

Description : The Stoke’s theorem uses which of the following operation? a) Divergence b) Gradient c) Curl d) Laplacian

Last Answer : c) Curl

Description : Which of the following theorem use the curl operation? a) Green’s theorem b) Gauss Divergence theorem c) Stoke’s theorem d) Maxwell equation

Last Answer : b) Gauss Divergence theorem

Description : When curl of a path is zero, the field is said to be conservative. State True/False. a) True b) False

Last Answer : a) True

Description : When a potential satisfies Laplace equation, then it is said to be a) Solenoidal b) Divergent c) Lamellar d) Harmonic

Last Answer : d) Harmonic

Description : A field in which a test charge around any closed surface in static path is zero is called a) Solenoidal b) Rotational c) Irrotational d) Conservativ

Last Answer : d) Conservative

Description : Find the divergence of the vector F= xe -x i + y j – xz k a) (1 – x)(1 + e -x ) b) (x – 1)(1 + e -x ) c) (1 – x)(1 – e) d) (x – 1)(1 – e)

Last Answer : a) (1 – x)(1 + e -x )

Description : Find the divergence of the vector yi + zj + xk. a) -1 b) 0 c) 1 d) 3

Last Answer : b) 0

Description : Compute the divergence of the vector xi + yj + zk. a) 0 b) 1 c) 2 d) 3

Last Answer : d) 3

Description : The divergence of a vector is a scalar. State True/False. a) True b) False

Last Answer : a) True

Description : The divergence of distance vector is a) 0 b) 3 c) 2 d) 1

Last Answer : b) 3

Description : Find the curl of the vector and state its nature at (1,1,-0.2) F = 30 i + 2xy j + 5xz 2 k a) √4.01 b) √4.02 c) √4.03 d) √4.04

Last Answer : d) √4.04

Description : The relation between flux density and vector potential is a) B = Curl(A) b) A = Curl(B) c) B = Div(A) d) A = Div(B)

Last Answer : a) B = Curl(A)

Description : Find the curl of the vector A = yz i + 4xy j + y k a) xi + j + (4y – z)k b) xi + yj + (z – 4y)k c) i + j + (4y – z)k d) i + yj + (4y – z)k

Last Answer : d) i + yj + (4y – z)k

Description : The curl of curl of a vector is given by, a) Div(Grad V) – (Del) 2 V b) Grad(Div V) – (Del) 2 V c) (Del) 2 V – Div(Grad V) d) (Del) 2 V – Grad(Div V)

Last Answer : b) Grad(Div V) – (Del) 2 V

Description : Curl is defined as the angular velocity at every point of the vector field. State True/False. a) True b) False

Last Answer : a) True

Description : Identify the correct vector identity. a) i . i = j . j = k . k = 0 b) i X j = j X k = k X i = 1 c) Div (u X v) = v . Curl(u) – u . Curl(v) d) i . j = j . k = k . i = 1

Last Answer : c) Div (u X v) = v . Curl(u) – u . Curl(v)

Description : The divergence of which quantity will be zero? a) E b) D c) H d) B

Last Answer : d) B

Description : If a function is said to be harmonic, then a) Curl(Grad V) = 0 b) Div(Curl V) = 0 c) Div(Grad V) = 0 d) Grad(Curl V) = 0

Last Answer : c) Div(Grad V) = 0

Description : Which of the following identities is always zero for static fields? a) Grad(Curl V) b) Curl(Div V) c) Div(Grad V) d) Curl(Grad V)

Last Answer : d) Curl(Grad V)

Description : Which quantity is solenoidal in the electromagnetic theory? a) Electric field intensity b) Electric flux density c) Magnetic field intensit d) Magnetic flux density

Last Answer : d) Magnetic flux density

Description : For a solenoidal field, the surface integral of D will be, a) 0 b) 1 c) 2 d) 3

Last Answer : a) 0

Description : The loss tangent of a perfect dielectric will be a) Zero b) Unity c) Maximum d) Minimum

Last Answer : d) Minimum

Description : For conductors, the loss tangent will be a) Zero b) Unity c) Maximum d) Minimum

Last Answer : c) Maximum

Description : The conductivity in free space medium is a) Infinity b) Unity c) Zero d) Negative

Last Answer : c) Zero

Description : When the conduction current density and displacement current density are same, the dissipation factor will be a) Zero b) Minimum c) Maximum d) Unity

Last Answer : d) Unity

Description : When a material has zero permittivity, the maximum potential that it can possess is a) ∞ b) -∞ c) Unity d) Zero

Last Answer : d) Zero

Description : The potential difference in an open circuit is a) Zero b) Unity c) Infinity d) Circuit does not exist open

Last Answer : c) Infinity

Description : For a test charge placed at infinity, the electric field will be a) Unity b) +∞ c) Zero d) -∞

Last Answer : c) Zero