In a medium other than air, the electric flux density will be
a) Solenoidal
b) Curl free
c) Irrotational
d) Divergent

1 Answer

Answer :

d) Divergent

Related questions

Description : For static fields, the curl of E will be a) Rotational b) Irrotational c) Solenoidal d) Divergent

Last Answer : b) Irrotational

Description : Identify the nature of the field, if the divergence is zero and curl is also zero. a) Solenoidal, irrotational b) Divergent, rotational c) Solenoidal, irrotational d) Divergent, rotational

Last Answer : c) Solenoidal, irrotational

Description : A field has zero divergence and it has curls. The field is said to be a) Divergent, rotational b) Solenoidal, rotational c) Solenoidal, irrotational d) Divergent, irrotational

Last Answer : b) Solenoidal, rotational

Description : Find the value of Stoke’s theorem for A = x i + y j + z k. The state of the function will be a) Solenoidal b) Divergent c) Rotational d) Curl free

Last Answer : d) Curl free

Description : The magnetic field intensity is said to be a) Divergent b) Curl free c) Solenoidal d) Rotational

Last Answer : c) Solenoidal

Description : Which quantity is solenoidal in the electromagnetic theory? a) Electric field intensity b) Electric flux density c) Magnetic field intensit d) Magnetic flux density

Last Answer : d) Magnetic flux density

Description : A field in which a test charge around any closed surface in static path is zero is called a) Solenoidal b) Rotational c) Irrotational d) Conservativ

Last Answer : d) Conservative

Description : When a potential satisfies Laplace equation, then it is said to be a) Solenoidal b) Divergent c) Lamellar d) Harmonic

Last Answer : d) Harmonic

Description : Determine the divergence of F = 30 i + 2xy j + 5xz 2 k at (1,1,-0.2) and state the nature of the field. a) 1, solenoidal b) 0, solenoidal c) 1, divergent d) 0, divergent

Last Answer : b) 0, solenoidal

Description : The curl of the electric field intensity is a) Conservative b) Rotational c) Divergent d) Static

Last Answer : b) Rotational

Description : A vector is said to be solenoidal when its a) Divergence is zero b) Divergence is unity c) Curl is zero d) Curl is unity

Last Answer : a) Divergence is zero

Description : In the medium of free space, the divergence of the electric flux density will be a) 1 b) 0 c) -1 d) Infinity

Last Answer : b) 0

Description : The relation between flux density and vector potential is a) B = Curl(A) b) A = Curl(B) c) B = Div(A) d) A = Div(B)

Last Answer : a) B = Curl(A)

Description : Ampere law states that, a) Divergence of H is same as the flux b) Curl of D is same as the current c) Divergence of E is zero d) Curl of H is same as the current density

Last Answer : d) Curl of H is same as the current density

Description : The electric flux density of a surface with permittivity of 2 is given by 12 units. What the flux density of the surface in air? a) 24 b) 6 c) 1/6 d) 0

Last Answer : b) 6

Description : Which equation will be true, if the medium is considered to be air? a) Curl(H) = 0 b) Div(H) = 0 c) Grad(H) = 0 d) Div(H) = 1

Last Answer : b) Div(H) = 0

Description : The flux density of medium 1 has a normal component of 2.4 units, then the normal component of the flux density in the medium 2 will be a) 1.2 b) 4.8 c) 2.4 d) 0

Last Answer : c) 2.4

Description : The charge density of a field with a position vector as electric flux density is given by a) 0 b) 1 c) 2 d) 3

Last Answer : d) 3

Description : The electric field intensity of a field with velocity 10m/s and flux density of 2.8 units is a) 0.28 b) 28 c) 280 d) 10/2.8

Last Answer : b) 28

Description : The charge density of a system with the position vector as electric flux density is a) 0 b) 1 c) 2 d) 3

Last Answer : d) 3

Description : Find the electric flux density of a material whose charge density is given by 12 units in a volume region of 0.5 units. a) 12 b) 24 c) 6 d) 48

Last Answer : c) 6

Description : Find the electric field when the velocity of the field is 12m/s and the flux density is 8.75 units. a) 510 b) 105 c) 150 d) 165

Last Answer : b) 105

Description : Find the electric flux density of a material with charge density 16 units in unit volume. a) 1/16 b) 16t c) 16 d) 162

Last Answer : c) 16

Description : Find the charge density when the electric flux density is given by 2x i + 3y j + 4z k. a) 10 b) 9 c) 24 d) 0

Last Answer : b) 9

Description : Calculate the displacement current density when the electric flux density is 20sin 0.5t. a) 10sin 0.5t b) 10cos 0.5t c) 20sin 2t d) 20cos 2t

Last Answer : b) 10cos 0.5t

Description : If the electric potential is given, which of the following cannot be calculated? a) Electrostatic energy b) Electric field intensity c) Electric flux density d) Permittivity

Last Answer : a) Electrostatic energy

Description : Calculate the energy in an electric field with flux density 6 units and field intensity of 4 units. a) 12 b) 24 c) 36 d) 48

Last Answer : a) 12

Description : Find the electric flux density surrounding a material with field intensity of 2xyz placed in transformer oil ( εr = 2.2) at the point P(1,2,3) is (in 10 -10 units) a) 2.1 b) 2.33 c) 2.5 d) 2.77

Last Answer : c) 2.5

Description : The electric flux density and electric field intensity have which of the following relation? a) Linear b) Nonlinear c) Inversely linear d) Inversely nonlinear

Last Answer : a) Linear

Description : The normal component of the electric flux density is always discontinuous at the interface. State True/False. a) True b) False

Last Answer : a) True

Description : Gauss law cannot be used to find which of the following quantity? a) Electric field intensity b) Electric flux density c) Charge d) Permittivity

Last Answer : d) Permittivity

Description : If the radius of a sphere is 1/(4π)m and the electric flux density is 16π units, the total flux is given by, a) 2 b) 3 c) 4 d) 5

Last Answer : c) 4

Description : Which of the following correctly states Gauss law? a) Electric flux is equal to charge b) Electric flux per unit volume is equal to charge c) Electric field is equal to charge density d) Electric flux per unit volume is equal to volume charge density

Last Answer : d) Electric flux per unit volume is equal to volume charge density

Description : The electric flux density is the a) Product of permittivity and electric field intensity b) Product of number of flux lines and permittivity c) Product of permeability and electric field intensity d) Product of number of flux lines and permeability

Last Answer : a) Product of permittivity and electric field intensity

Description : Electric flux density in electric field is referred to as a) Number of flux lines b) Ratio of flux lines crossing a surface and the surface area c) Direction of flux at a point d) Flux lines per unit area

Last Answer : b) Ratio of flux lines crossing a surface and the surface area

Description : In dielectric medium, the Maxwell second equation becomes a) Curl(H) = Jd b) Curl(H) = Jc c) Curl(E) = Jd d) Curl(E) = Jd

Last Answer : a) Curl(H) = Jd

Description : The charge density of a electrostatic field is given by a) Curl of E b) Divergence of E c) Curl of D d) Divergence of D

Last Answer : d) Divergence of D

Description : The total current density is given as 0.5i + j – 1.5k units. Find the curl of the magnetic field intensity. a) 0.5i – 0.5j + 0.5k b) 0.5i + j -1.5k c) i – j + k d) i + j – k

Last Answer : b) 0.5i + j -1.5k

Description : Find the correct relation between current density and magnetization. a) J = Grad(M) b) J = Div(M) c) J = Curl(M) d) M = Curl(J)

Last Answer : c) J = Curl(M)

Description : For a solenoidal field, the surface integral of D will be, a) 0 b) 1 c) 2 d) 3

Last Answer : a) 0

Description : Divergence theorem computes to zero for a solenoidal function. State True/False. a) True b) False

Last Answer : a) True

Description : Is the vector is irrotational. E = yz i + xz j + xy k a) Yes b) No

Last Answer : a) Yes

Description : Find whether the vector is solenoidal, E = yz i + xz j + xy k a) Yes, solenoidal b) No, non-solenoidal c) Solenoidal with negative divergence d) Variable divergence

Last Answer : a) Yes, solenoidal

Description : When a vector is irrotational, which condition holds good? a) Stoke’s theorem gives non-zero value b) Stoke’s theorem gives zero value c) Divergence theorem is invalid d) Divergence theorem is valid

Last Answer : b) Stoke’s theorem gives zero value

Description : In air, the tangential component of flux density is continuous at the boundary. State True/False. a) True b) False

Last Answer : a) True

Description : Calculate the flux density due to a circular conductor of radius 100nm and current 5A in air. a) 10 b) 100 c) 0.1 d) 1

Last Answer : a) 10

Description : Find the flux density of a conductor in the square of the centre of the loop having current 3.14A and radius is 1.414m in air. a) 8π x 10 -7 b) 4π x 10 -7 c) 6π x 10 -7 d) 2π x 10 -7

Last Answer : c) 6π x 10 -7

Description : Find the magnetic field intensity of a material with flux density of 24 units in air(in 10 6 order) a) 19.09 b) 21 c) 25 d) 26.78

Last Answer : a) 19.09

Description : Find the flux density B when the potential is given by x i + y j + z k in air. a) 12π x 10 -7 b) -12π x 10 -7 c) 6π x 10 -7 d) -6π x 10 -7

Last Answer : b) -12π x 10 -7

Description : Given the magnetic field is 2.4 units. Find the flux density in air(in 10 -6 order). a) 2 b) 3 c) 4 d) 5

Last Answer : b) 3