Find the value of Stoke’s theorem for y i + z j + x k.
a) i + j
b) j + k
c) i + j + k
d) –i – j – k

1 Answer

Answer :

d) –i – j – k

Related questions

Description : Find the value of Stoke’s theorem for A = x i + y j + z k. The state of the function will be a) Solenoidal b) Divergent c) Rotational d) Curl free

Last Answer : d) Curl free

Description : Find the value of divergence theorem for A = xy 2 i + y 3 j + y 2 z k for a cuboid given by 0

Last Answer : c) 5/3

Description : Find the value of divergence theorem for the field D = 2xy i + x 2 j for the rectangular parallelepiped given by x = 0 and 1, y = 0 and 2, z = 0 and 3. a) 10 b) 12 c) 14 d) 16

Last Answer : b) 12

Description : Find the value of divergence theorem for the field D = 2xy i + x 2 j for the rectangular parallelepiped given by x = 0 and 1, y = 0 and 2, z = 0 and 3. a) 10 b) 12 c) 14 d) 16

Last Answer : b) 12

Description : For a function given by F = 4x i + 7y j +z k, the divergence theorem evaluates to which of the values given, if the surface considered is a cone of radius 1/2π m and height 4π 2 m. a) 1 b) 2 c) 3 d) 4

Last Answer : b) 2

Description : When a vector is irrotational, which condition holds good? a) Stoke’s theorem gives non-zero value b) Stoke’s theorem gives zero value c) Divergence theorem is invalid d) Divergence theorem is valid

Last Answer : b) Stoke’s theorem gives zero value

Description : The Gauss law employs which theorem for the calculation of charge density? a) Green theorem b) Stokes theorem c) Gauss theorem d) Maxwell equation

Last Answer : c) Gauss theorem

Description : In the conversion of line integral of H into surface integral, which theorem is used? a) Green theorem b) Gauss theorem c) Stokes theore d) It cannot be converted

Last Answer : c) Stokes theorem

Description : The Ampere law is based on which theorem? a) Green’s theorem b) Gauss divergence theorem c) Stoke’s theorem d) Maxwell theorem

Last Answer : c) Stoke’s theorem

Description : Gauss law cannot be expressed in which of the following forms? a) Differential b) Integral c) Point d) Stokes theorem

Last Answer : d) Stokes theorem

Description : Divergence theorem is based on a) Gauss law b) Stoke’s law c) Ampere law d) Lenz law

Last Answer : a) Gauss law

Description : The Green’s theorem can be related to which of the following theorems mathematically? a) Gauss divergence theorem b) Stoke’s theorem c) Euler’s theorem d) Leibnitz’s theorem

Last Answer : b) Stoke’s theorem

Description : The Stoke’s theorem can be used to find which of the following? a) Area enclosed by a function in the given region b) Volume enclosed by a function in the given region c) Linear distance d) Curl of the function

Last Answer : a) Area enclosed by a function in the given region

Description : Which of the following theorem convert line integral to surface integral? a) Gauss divergence and Stoke’s theorem b) Stoke’s theorem only c) Green’ s theorem only d) Stoke’s and Green’s theorem

Last Answer : d) Stoke’s and Green’s theorem

Description : The Stoke’s theorem uses which of the following operation? a) Divergence b) Gradient c) Curl d) Laplacian

Last Answer : c) Curl

Description : Which of the following theorem use the curl operation? a) Green’s theorem b) Gauss Divergence theorem c) Stoke’s theorem d) Maxwell equation

Last Answer : b) Gauss Divergence theorem

Description : Find the flux density B when the potential is given by x i + y j + z k in air. a) 12π x 10 -7 b) -12π x 10 -7 c) 6π x 10 -7 d) -6π x 10 -7

Last Answer : b) -12π x 10 -7

Description : Find the magnetic flux density of the material with magnetic vector potential A = y i + z j + x k. a) i + j + k b) –i – j – k c) –i-j d) –i-k

Last Answer : b) –i – j – k

Description : If D = 2xy i + 3yz j + 4xz k, how much flux passes through x = 3 plane for which - 1

Last Answer : c) 36

Description : Find the gradient of t = x 2 y+ e z at the point p(1,5,-2) a) i + 10j + 0.135k b) 10i + j + 0.135k c) i + 0.135j + 10k d) 10i + 0.135j + k

Last Answer : b) 10i + j + 0.135k

Description : Find the divergence theorem value for the function given by (e z , sin x, y 2 ) a) 1 b) 0 c) -1 d) 2

Last Answer : b) 0

Description : If a function is described by F = (3x + z, y 2 − sin x 2 z, xz + ye x5 ), then the divergence theorem value in the region 0

Last Answer : c) 39

Description : The divergence theorem value for the function x 2 + y 2 + z 2 at a distance of one unit from the origin is a) 0 b) 1 c) 2 d) 3

Last Answer : d) 3

Description : Find the curl of the vector A = yz i + 4xy j + y k a) xi + j + (4y – z)k b) xi + yj + (z – 4y)k c) i + j + (4y – z)k d) i + yj + (4y – z)k

Last Answer : d) i + yj + (4y – z)k

Description : Find the curl of A = (y cos ax)i + (y + e x )k a) 2i – ex j – cos ax k b) i – ex j – cos ax k c) 2i – ex j + cos ax k d) i – ex j + cos ax k

Last Answer : b) i – ex j – cos ax k

Description : Find the divergence of the vector F= xe -x i + y j – xz k a) (1 – x)(1 + e -x ) b) (x – 1)(1 + e -x ) c) (1 – x)(1 – e) d) (x – 1)(1 – e)

Last Answer : a) (1 – x)(1 + e -x )

Description : Find the value of Green’s theorem for F = x 2 and G = y 2 is a) 0 b) 1 c) 2 d) 3

Last Answer : a) 0

Description : An electric field is given as E = 6y 2 z i + 12xyz j + 6xy 2 k. An incremental path is given by dl = -3 i + 5 j – 2 k mm. The work done in moving a 2mC charge along the path if the location of the path is at p(0,2,5) is (in Joule) a) 0.64 b) 0.72 c) 0.78 d) 0.80

Last Answer : b) 0.72

Description : Evaluate the surface integral ∫∫ (3x i + 2y j). dS, where S is the sphere given by x 2 + y 2 + z 2 = 9. a) 120π b) 180π c) 240π d) 300π

Last Answer : b) 180π

Description : Find the magnetic field intensity when the magnetic vector potential x i + 2y j + 3z k. a) 6 b) -6 c) 0 d) 1

Last Answer : b) -6

Description : Find the potential between a(-7,2,1) and b(4,1,2). Given E = (-6y/x 2 )i + ( 6/x) j + 5 k. a) -8.014 b) -8.114 c) -8.214 d) -8.314 View Answ

Last Answer : c) -8.214

Description : Identify the correct vector identity. a) i . i = j . j = k . k = 0 b) i X j = j X k = k X i = 1 c) Div (u X v) = v . Curl(u) – u . Curl(v) d) i . j = j . k = k . i = 1

Last Answer : c) Div (u X v) = v . Curl(u) – u . Curl(v)

Description : Find the current density on the conductor surface when a magnetic field H = 3cos x i + zcos x j A/m, for z>0 and zero, otherwise is applied to a perfectly conducting surface in xy plane. a) cos x i b) –cos x i c) cos x j d) –cos x j

Last Answer : b) –cos x i

Description : Calculate the charge density for the current density given 20sin x i + ycos z j at the origin. a) 20t b) 21t c) 19t d) -20t

Last Answer : b) 21t

Description : Transform the vector B=yi+(x+z)j located at point (-2,6,3) into cylindrical coordinates. a) (6.325,-71.57,3) b) (6.325,71.57,3) c) (6.325,73.57,3) d) (6.325,-73.57,3)

Last Answer : a) (6.325,-71.57,3)

Description : The spherical equivalent of the vector B = yi + (x + z)j located at (-2,6,3) is given by a) (7,64.62,71.57) b) (7,-64.62,-71.57) c) (7,-64.62,71.57) d) (7,64.62,-71.57)

Last Answer : d) (7,64.62,-71.57)

Description : The total current density is given as 0.5i + j – 1.5k units. Find the curl of the magnetic field intensity. a) 0.5i – 0.5j + 0.5k b) 0.5i + j -1.5k c) i – j + k d) i + j – k

Last Answer : b) 0.5i + j -1.5k

Description : The current element of the magnetic vector potential for a surface current will be a) J dS b) I dL c) K dS d) J dV

Last Answer : c) K dS

Description : Find the charge density when the electric flux density is given by 2x i + 3y j + 4z k. a) 10 b) 9 c) 24 d) 0

Last Answer : b) 9

Description : Find the potential between two points p(1,-1,0) and q(2,1,3) with E = 40xy i + 20x 2 j + 2 k a) 104 b) 105 c) 106 d) 107

Last Answer : c) 106

Description : Is the vector is irrotational. E = yz i + xz j + xy k a) Yes b) No

Last Answer : a) Yes

Description : Find the curl of the vector and state its nature at (1,1,-0.2) F = 30 i + 2xy j + 5xz 2 k a) √4.01 b) √4.02 c) √4.03 d) √4.04

Last Answer : d) √4.04

Description : Find whether the vector is solenoidal, E = yz i + xz j + xy k a) Yes, solenoidal b) No, non-solenoidal c) Solenoidal with negative divergence d) Variable divergence

Last Answer : a) Yes, solenoidal

Description : Determine the divergence of F = 30 i + 2xy j + 5xz 2 k at (1,1,-0.2) and state the nature of the field. a) 1, solenoidal b) 0, solenoidal c) 1, divergent d) 0, divergent

Last Answer : b) 0, solenoidal

Description : Given B= (10/r)i+( rcos θ) j+k in spherical coordinates. Find Cartesian points at (- 3,4,0) a) -2i + j b) 2i + k c) i + 2j d) –i – 2k

Last Answer : a) -2i + j

Description : Transform the spherical system B = (10/r)i + (10cos θ)j + k into cylindrical form at (5, π/2, -2) a) 2.467i + j + 1.167k b) 2.467i – j + 1.167k c) 2.467i – j – 1.167k d) 2.467i + j – 1.167k

Last Answer : a) 2.467i + j + 1.167k

Description : The unit vector to the points p1(0,1,0), p2(1,0,1), p3(0,0,1) is a) (-j – k)/1.414 b) (-i – k)/1.414 c) (-i – j)/1.414 d) (-i – j – k)/1.414

Last Answer : a) (-j – k)/1.414

Description : Find a vector normal to a plane consisting of points p1(0,1,0), p2(1,0,1) and p3(0,0,1) a) –j – k b) –i – j c) –i – k d) –i – j – k

Last Answer : a) –j – k

Description : In a dipole, the Gauss theorem value will be a) 1 b) 0 c) -1 d) 2

Last Answer : b) 0

Description : Find the electric field of a potential function given by 20 log x + y at the point (1,1,0). a) -20 i – j b) -i -20 j c) i + j d) (i + j)/20

Last Answer : a) -20 i – j