Find the electric field of a potential function given by 20 log x + y at the point (1,1,0).
a) -20 i – j
b) -i -20 j
c) i + j
d) (i + j)/20

1 Answer

Answer :

a) -20 i – j

Related questions

Description : If potential V = 20/(x 2 + y 2 ). The electric field intensity for V is 40(x i + y j)/(x 2 + y 2 ) 2 . State True/False. a) True b) False

Last Answer : a) True

Description : Given the vector potential is 16 – 12sin y j. Find the field intensity at the origin. a) 28 b) 16 c) 12 d) 4

Last Answer : c) 12

Description : Find the value of divergence theorem for the field D = 2xy i + x 2 j for the rectangular parallelepiped given by x = 0 and 1, y = 0 and 2, z = 0 and 3. a) 10 b) 12 c) 14 d) 16

Last Answer : b) 12

Description : Find the value of divergence theorem for the field D = 2xy i + x 2 j for the rectangular parallelepiped given by x = 0 and 1, y = 0 and 2, z = 0 and 3. a) 10 b) 12 c) 14 d) 16

Last Answer : b) 12

Description : Find the magnetic field intensity when the magnetic vector potential x i + 2y j + 3z k. a) 6 b) -6 c) 0 d) 1

Last Answer : b) -6

Description : Find the flux density B when the potential is given by x i + y j + z k in air. a) 12π x 10 -7 b) -12π x 10 -7 c) 6π x 10 -7 d) -6π x 10 -7

Last Answer : b) -12π x 10 -7

Description : An electric field is given as E = 6y 2 z i + 12xyz j + 6xy 2 k. An incremental path is given by dl = -3 i + 5 j – 2 k mm. The work done in moving a 2mC charge along the path if the location of the path is at p(0,2,5) is (in Joule) a) 0.64 b) 0.72 c) 0.78 d) 0.80

Last Answer : b) 0.72

Description : Find the magnetic flux density of the material with magnetic vector potential A = y i + z j + x k. a) i + j + k b) –i – j – k c) –i-j d) –i-k

Last Answer : b) –i – j – k

Description : Find the potential between a(-7,2,1) and b(4,1,2). Given E = (-6y/x 2 )i + ( 6/x) j + 5 k. a) -8.014 b) -8.114 c) -8.214 d) -8.314 View Answ

Last Answer : c) -8.214

Description : Potential difference is the work done in moving a unit positive charge from one point to another in an electric field. State True/False. a) True b) False

Last Answer : a) True

Description : Given E = 40xyi + 20x 2 j + 2k. Calculate the potential between two points (1,-1,0) and (2,1,3). a) 105 b) 106 c) 107 d) 108

Last Answer : b) 106

Description : If the electric potential is given, which of the following cannot be calculated? a) Electrostatic energy b) Electric field intensity c) Electric flux density d) Permittivity

Last Answer : a) Electrostatic energy

Description : Find the Laplace equation value of the following potential field V = x 2 – y 2 + z 2 a) 0 b) 2 c) 4 d) 6

Last Answer : b) 2

Description : Find the gradient of t = x 2 y+ e z at the point p(1,5,-2) a) i + 10j + 0.135k b) 10i + j + 0.135k c) i + 0.135j + 10k d) 10i + 0.135j + k

Last Answer : b) 10i + j + 0.135k

Description : Find the value of divergence theorem for A = xy 2 i + y 3 j + y 2 z k for a cuboid given by 0

Last Answer : c) 5/3

Description : Given D = e -x sin y i – e -x cos y j Find divergence of D. a) 3 b) 2 c) 1 d) 0

Last Answer : d) 0

Description : When electric potential is null, then the electric field intensity will be a) 0 b) 1 c) dA/dt d) –dA/dt

Last Answer : d) –dA/dt

Description : Calculate the electric field intensity of a line charge of length 2m and potential 24V. a) 24 b) 12 c) 0.083 d) 12.67

Last Answer : b) 12

Description : Find the charge density when the electric flux density is given by 2x i + 3y j + 4z k. a) 10 b) 9 c) 24 d) 0

Last Answer : b) 9

Description : The total current density is given as 0.5i + j – 1.5k units. Find the curl of the magnetic field intensity. a) 0.5i – 0.5j + 0.5k b) 0.5i + j -1.5k c) i – j + k d) i + j – k

Last Answer : b) 0.5i + j -1.5k

Description : Find the value of Stoke’s theorem for A = x i + y j + z k. The state of the function will be a) Solenoidal b) Divergent c) Rotational d) Curl free

Last Answer : d) Curl free

Description : Find the gradient of the function sin x + cos y. a) cos x i – sin y j b) cos x i + sin y j c) sin x i – cos y j d) sin x i + cos y j

Last Answer : a) cos x i – sin y j

Description : Find the vector potential when the field intensity 60x 2 varies from (0,0,0) to (1,0,0). a) 120 b) -20 c) -180 d) 60

Last Answer : b) -20

Description : Find the current density on the conductor surface when a magnetic field H = 3cos x i + zcos x j A/m, for z>0 and zero, otherwise is applied to a perfectly conducting surface in xy plane. a) cos x i b) –cos x i c) cos x j d) –cos x j

Last Answer : b) –cos x i

Description : Evaluate the surface integral ∫∫ (3x i + 2y j). dS, where S is the sphere given by x 2 + y 2 + z 2 = 9. a) 120π b) 180π c) 240π d) 300π

Last Answer : b) 180π

Description : If V = 2x 2 y – 5z, find its electric field at point (-4,3,6) a) 47.905 b) 57.905 c) 67.905 d) 77.905

Last Answer : b) 57.905

Description : Find the potential between two points p(1,-1,0) and q(2,1,3) with E = 40xy i + 20x 2 j + 2 k a) 104 b) 105 c) 106 d) 107

Last Answer : c) 106

Description : Find the potential of the function V = 60cos θ/r at the point P(3, 60, 25). a) 20 b) 10 c) 30 d) 60

Last Answer : b) 10

Description : Find the potential at a point (4, 3, -6) for the function V = 2x 2 y + 5z. a) 96 b) 66 c) 30 d) -66

Last Answer : b) 66

Description : The line integral of the electric field intensity is a) Mmf b) Emf c) Electric potential d) Magnetic potential

Last Answer : b) Emf

Description : The capacitance of a material refers to a) Ability of the material to store magnetic field b) Ability of the material to store electromagnetic field c) Ability of the material to store electric field d) Potential between two charged plates

Last Answer : c) Ability of the material to store electric field

Description : Calculate the potential when a conductor of length 2m is having an electric field of 12.3units. a) 26.4 b) 42.6 c) 64.2 d) 24.6

Last Answer : d) 24.6

Description : Find the electric potential for an electric field 3units at a distance of 2m. a) 9 b) 4 c) 6 d) 3/2

Last Answer : c) 6

Description : The electric field intensity is the negative gradient of the electric potential. State True/False. a) True b) False

Last Answer : a) True

Description : If D = 2xy i + 3yz j + 4xz k, how much flux passes through x = 3 plane for which - 1

Last Answer : c) 36

Description : The resultant electric field of two components in the x and y direction having amplitudes 6 and 8 respectively is a) 100 b) 36 c) 64 d) 10

Last Answer : d) 10

Description : When the electric field travels in +x direction and the EM wave is travelling the –y direction, then the magnetic field will be travelling in which direction? a) +z direction b) –z direction c) Either +z or –z direction d) Does not trave

Last Answer : c) Either +z or –z direction

Description : Compute the conductivity when the current density is 12 units and the electric field is 20 units. Also identify the nature of the material. a) 1.67, dielectric b) 1.67, conductor c) 0.6, dielectric d) 0.6, conductor

Last Answer : c) 0.6, dielectric

Description : Determine the divergence of F = 30 i + 2xy j + 5xz 2 k at (1,1,-0.2) and state the nature of the field. a) 1, solenoidal b) 0, solenoidal c) 1, divergent d) 0, divergent

Last Answer : b) 0, solenoidal

Description : Compute the charge enclosed by a cube of 2m each edge centered at the origin and with the edges parallel to the axes. Given D = 10y 3 /3 j. a) 20 b) 70/3 c) 80/3 d) 30

Last Answer : c) 80/3

Description : The current element of the magnetic vector potential for a surface current will be a) J dS b) I dL c) K dS d) J dV

Last Answer : c) K dS

Description : The magnetic vector potential for a line current will be inversely proportional to a) dL b) I c) J d) R

Last Answer : d) R

Description : The Laplacian of the magnetic vector potential will be a) –μ J b) – μ I c) –μ B d) –μ H

Last Answer : a) –μ J

Description : Find the power, given energy E = 2J and current density J = x 2 varies from x = 0 and x = 1. a) 1/3 b) 2/3 c) 1 d) 4/3

Last Answer : b) 2/3

Description : Find the electric field due to charge density of 1/18 and distance from a point P is 0.5 in air(in 10 9 order) a) 0 b) 1 c) 2 d) 3

Last Answer : c) 2

Description : Find the electric field when the magnetic field is given by 2sin t in air. a) 8π x 10 -7 cos t b) 4π x 10 -7 sin t c) -8π x 10 -7 cos t d) -4π x 10 -7 sin t

Last Answer : a) 8π x 10 -7 cos t

Description : The charge density of a field with a position vector as electric flux density is given by a) 0 b) 1 c) 2 d) 3

Last Answer : d) 3

Description : Find the Maxwell first law value for the electric field intensity is given by A sin wt az a) 0 b) 1 c) -1 d) A

Last Answer : a) 0

Description : The electric field intensity of a surface with permittivity 3.5 is given by 18 units. What the field intensity of the surface in air? a) 5.14 b) 0.194 c) 63 d) 29

Last Answer : c) 63

Description : For a function given by F = 4x i + 7y j +z k, the divergence theorem evaluates to which of the values given, if the surface considered is a cone of radius 1/2π m and height 4π 2 m. a) 1 b) 2 c) 3 d) 4

Last Answer : b) 2