Given the vector potential is 16 – 12sin y j. Find the field intensity at the origin.
a) 28
b) 16
c) 12
d) 4

1 Answer

Answer :

c) 12

Related questions

Description : Find the magnetic field intensity when the magnetic vector potential x i + 2y j + 3z k. a) 6 b) -6 c) 0 d) 1

Last Answer : b) -6

Description : If potential V = 20/(x 2 + y 2 ). The electric field intensity for V is 40(x i + y j)/(x 2 + y 2 ) 2 . State True/False. a) True b) False

Last Answer : a) True

Description : Find the vector potential when the field intensity 60x 2 varies from (0,0,0) to (1,0,0). a) 120 b) -20 c) -180 d) 60

Last Answer : b) -20

Description : Find the value of divergence theorem for the field D = 2xy i + x 2 j for the rectangular parallelepiped given by x = 0 and 1, y = 0 and 2, z = 0 and 3. a) 10 b) 12 c) 14 d) 16

Last Answer : b) 12

Description : Find the value of divergence theorem for the field D = 2xy i + x 2 j for the rectangular parallelepiped given by x = 0 and 1, y = 0 and 2, z = 0 and 3. a) 10 b) 12 c) 14 d) 16

Last Answer : b) 12

Description : Find the magnetic flux density of the material with magnetic vector potential A = y i + z j + x k. a) i + j + k b) –i – j – k c) –i-j d) –i-k

Last Answer : b) –i – j – k

Description : Find the electric field of a potential function given by 20 log x + y at the point (1,1,0). a) -20 i – j b) -i -20 j c) i + j d) (i + j)/20

Last Answer : a) -20 i – j

Description : The total current density is given as 0.5i + j – 1.5k units. Find the curl of the magnetic field intensity. a) 0.5i – 0.5j + 0.5k b) 0.5i + j -1.5k c) i – j + k d) i + j – k

Last Answer : b) 0.5i + j -1.5k

Description : A point charge 2nC is located at origin. What is the potential at (1,0,0)? a) 12 b) 14 c) 16 d) 18

Last Answer : d) 18

Description : Calculate the electric field intensity of a line charge of length 2m and potential 24V. a) 24 b) 12 c) 0.083 d) 12.67

Last Answer : b) 12

Description : The current element of the magnetic vector potential for a surface current will be a) J dS b) I dL c) K dS d) J dV

Last Answer : c) K dS

Description : The magnetic vector potential for a line current will be inversely proportional to a) dL b) I c) J d) R

Last Answer : d) R

Description : The Laplacian of the magnetic vector potential will be a) –μ J b) – μ I c) –μ B d) –μ H

Last Answer : a) –μ J

Description : The relation between vector potential and field strength is given by a) Gradient b) Divergence c) Curl d) Del operator

Last Answer : a) Gradient

Description : The magnitude of the conduction current density for a magnetic field intensity of a vector yi + zj + xk will be a) 1.414 b) 1.732 c) -1.414 d) -1.732

Last Answer : b) 1.732

Description : If the electric potential is given, which of the following cannot be calculated? a) Electrostatic energy b) Electric field intensity c) Electric flux density d) Permittivity

Last Answer : a) Electrostatic energy

Description : The electric field intensity of a field with velocity 10m/s and flux density of 2.8 units is a) 0.28 b) 28 c) 280 d) 10/2.8

Last Answer : b) 28

Description : Find the height of an infinitely long conductor from point P which is carrying current of 6.28A and field intensity is 0.5 units. a) 0.5 b) 2 c) 6.28 d) 1

Last Answer : b) 2

Description : Find the curl of the vector A = yz i + 4xy j + y k a) xi + j + (4y – z)k b) xi + yj + (z – 4y)k c) i + j + (4y – z)k d) i + yj + (4y – z)k

Last Answer : d) i + yj + (4y – z)k

Description : Find the divergence of the vector F= xe -x i + y j – xz k a) (1 – x)(1 + e -x ) b) (x – 1)(1 + e -x ) c) (1 – x)(1 – e) d) (x – 1)(1 – e)

Last Answer : a) (1 – x)(1 + e -x )

Description : Find the flux density B when the potential is given by x i + y j + z k in air. a) 12π x 10 -7 b) -12π x 10 -7 c) 6π x 10 -7 d) -6π x 10 -7

Last Answer : b) -12π x 10 -7

Description : Find the magnetic field when the magnetic vector potential is a unit vector. a) 1 b) -1 c) 0 d) 2

Last Answer : c) 0

Description : The spherical equivalent of the vector B = yi + (x + z)j located at (-2,6,3) is given by a) (7,64.62,71.57) b) (7,-64.62,-71.57) c) (7,-64.62,71.57) d) (7,64.62,-71.57)

Last Answer : d) (7,64.62,-71.57)

Description : When electric potential is null, then the electric field intensity will be a) 0 b) 1 c) dA/dt d) –dA/dt

Last Answer : d) –dA/dt

Description : The line integral of the electric field intensity is a) Mmf b) Emf c) Electric potential d) Magnetic potential

Last Answer : b) Emf

Description : The electric field intensity is the negative gradient of the electric potential. State True/False. a) True b) False

Last Answer : a) True

Description : The ultimate result of the divergence theorem evaluates which one of the following? a) Field intensity b) Field density c) Potential d) Charge and flux

Last Answer : d) Charge and flux

Description : Find the magnetization of the material with susceptibility of 6 units and magnetic field intensity of 13 units. a) 2.16 b) 6.2 c) 78 d) 1.3

Last Answer : c) 78

Description : Calculate the energy in an electric field with permittivity of 56 and field intensity of 36π(in μJ) a) 3.16 b) 5.16 c) 7.16 d) 9.16

Last Answer : a) 3.16

Description : Calculate the charge density for the current density given 20sin x i + ycos z j at the origin. a) 20t b) 21t c) 19t d) -20t

Last Answer : b) 21t

Description : Compute the charge enclosed by a cube of 2m each edge centered at the origin and with the edges parallel to the axes. Given D = 10y 3 /3 j. a) 20 b) 70/3 c) 80/3 d) 30

Last Answer : c) 80/3

Description : Calculate the polarisation vector in air when the susceptibility is 5 and electric field is 12 units. a) 3 b) 2 c) 60 d) 2.4

Last Answer : c) 60

Description : Find the Gauss value for a position vector in Cartesian system from the origin to one unit in three dimensions. a) 0 b) 3 c) -3 d) 1

Last Answer : b) 3

Description : Calculate the magnetization of a material with susceptibility of 50 and field intensity of 0.25 units. a) 12.5 b) 25 c) 75 d) 37.5

Last Answer : a) 12.5

Description : Calculate the energy in an electric field with flux density 6 units and field intensity of 4 units. a) 12 b) 24 c) 36 d) 48

Last Answer : a) 12

Description : Is the vector is irrotational. E = yz i + xz j + xy k a) Yes b) No

Last Answer : a) Yes

Description : Find the curl of the vector and state its nature at (1,1,-0.2) F = 30 i + 2xy j + 5xz 2 k a) √4.01 b) √4.02 c) √4.03 d) √4.04

Last Answer : d) √4.04

Description : Find whether the vector is solenoidal, E = yz i + xz j + xy k a) Yes, solenoidal b) No, non-solenoidal c) Solenoidal with negative divergence d) Variable divergence

Last Answer : a) Yes, solenoidal

Description : Transform the vector B=yi+(x+z)j located at point (-2,6,3) into cylindrical coordinates. a) (6.325,-71.57,3) b) (6.325,71.57,3) c) (6.325,73.57,3) d) (6.325,-73.57,3)

Last Answer : a) (6.325,-71.57,3)

Description : Identify the correct vector identity. a) i . i = j . j = k . k = 0 b) i X j = j X k = k X i = 1 c) Div (u X v) = v . Curl(u) – u . Curl(v) d) i . j = j . k = k . i = 1

Last Answer : c) Div (u X v) = v . Curl(u) – u . Curl(v)

Description : The unit vector to the points p1(0,1,0), p2(1,0,1), p3(0,0,1) is a) (-j – k)/1.414 b) (-i – k)/1.414 c) (-i – j)/1.414 d) (-i – j – k)/1.414

Last Answer : a) (-j – k)/1.414

Description : Find a vector normal to a plane consisting of points p1(0,1,0), p2(1,0,1) and p3(0,0,1) a) –j – k b) –i – j c) –i – k d) –i – j – k

Last Answer : a) –j – k

Description : Find the magnetic field intensity due to an infinite sheet of current 5A and charge density of 12j units in the positive y direction and the z component is below the sheet. a) 6 b) 0 c) -6 d) 60k

Last Answer : c) -6

Description : Find the magnetic field intensity due to an infinite sheet of current 5A and charge density of 12j units in the positive y direction and the z component is above the sheet. a) -6 b) 12k c) 60 d) 6

Last Answer : d) 6

Description : Given E = 40xyi + 20x 2 j + 2k. Calculate the potential between two points (1,-1,0) and (2,1,3). a) 105 b) 106 c) 107 d) 108

Last Answer : b) 106

Description : Find the potential between a(-7,2,1) and b(4,1,2). Given E = (-6y/x 2 )i + ( 6/x) j + 5 k. a) -8.014 b) -8.114 c) -8.214 d) -8.314 View Answ

Last Answer : c) -8.214

Description : The charge density of a field with a position vector as electric flux density is given by a) 0 b) 1 c) 2 d) 3

Last Answer : d) 3

Description : Find the Maxwell first law value for the electric field intensity is given by A sin wt az a) 0 b) 1 c) -1 d) A

Last Answer : a) 0

Description : Find the current when the magnetic field intensity is given by 2L and L varies as 0->1. a) 2 b) 1 c) 0.5 d) 0

Last Answer : b) 1

Description : The electric field intensity of a surface with permittivity 3.5 is given by 18 units. What the field intensity of the surface in air? a) 5.14 b) 0.194 c) 63 d) 29

Last Answer : c) 63