The torque of a conductor is defined only in the case when
a) The field is perpendicular to the loop
b) The plane of the loop is parallel to the field
c) The plane of the loop is perpendicular to the current direction
d) The field and the current direction are same

1 Answer

Answer :

b) The plane of the loop is parallel to the field

Related questions

Description : Find the current density on the conductor surface when a magnetic field H = 3cos x i + zcos x j A/m, for z>0 and zero, otherwise is applied to a perfectly conducting surface in xy plane. a) cos x i b) –cos x i c) cos x j d) –cos x j

Last Answer : b) –cos x i

Description : In S polarisation, the electric field lies in the plane perpendicular to that of the interface. State True/False a) True b) False

Last Answer : a) True

Description : Find the flux density of a conductor in the square of the centre of the loop having current 3.14A and radius is 1.414m in air. a) 8π x 10 -7 b) 4π x 10 -7 c) 6π x 10 -7 d) 2π x 10 -7

Last Answer : c) 6π x 10 -7

Description : The torque expression of a current carrying conductor is a) T = BIA cos θ b) T = BA cos θ c) T = BIA sin θ d) T = BA sin θ

Last Answer : c) T = BIA sin θ

Description : Consider the conductor to be a coil of turns 60 and the flux density to be 13.5 units, current 0.12A and area 16units. The torque will be a) 1555.2 b) 1222.5 c) 525.1 d) 255.6

Last Answer : a) 1555.2

Description : The torque on a conductor with flux density 23 units, current 1.6A and area 6.75 units will be a) 248.4 b) 192.6 c) 175.4 d) 256.9

Last Answer : a) 248.4

Description : In electromagnetic waves, the electric field will be perpendicular to which of the following? a) Magnetic field intensity b) Wave propagation c) Both H and wave direction d) It propagates independently

Last Answer : c) Both H and wave direction

Description : Find the torque of a loop with magnetic moment 12.5 and magnetic flux density 7.65 units is a) 95.625 b) 65.925 c) 56.525 d) 65.235

Last Answer : a) 95.625

Description : F = BIL can only be used if the magnetic field and electric current are A. at right angles to each other B. in same direction C. anti-parallel to each other D. anti-perpendicular to each other

Last Answer : at right angles to each other

Description : A square loop of side and a straight infinity conducor are placed in the same plane with two sides of the squre parallel to the conductor. The resista

Last Answer : A square loop of side and a straight infinity conducor are placed in the same plane with two sides of the squre ... na+b)/(b)|`. Find the value of n.

Description : A conducting loop is placed in a uniform magnetic field with its plane perpendicular to the field with its plane perpendicular to the field. An emf is

Last Answer : A conducting loop is placed in a uniform magnetic field with its plane perpendicular to the field ... . the loop is deformed from the original shape

Description : 1. Consider a circular loop of wire lying in the plane of the table. Let the current pass through the loop clockwise. Apply the right-hand rule to find out the direction of the magnetic field inside and outside the loop. -Physics-10

Last Answer : Solution: For the downward direction of the current, the direction of the magnetic field will be as if emerging from the table outside the loop and merging with the table inside the loop. Similarly, ... the table outside the loop and merging with the table inside the loop, as shown in the figure.

Description : When a uniform magnetic field B is applied to a current carrying coil, the coil will rotate in such a manner that its plane a) becomes parallel to B b) becomes anti-parallel to B c) makes an angle of 600 with B d) becomes perpendicular to B

Last Answer : d) becomes perpendicular to B

Description : Find the height of an infinitely long conductor from point P which is carrying current of 6.28A and field intensity is 0.5 units. a) 0.5 b) 2 c) 6.28 d) 1

Last Answer : b) 2

Description : Find the magnetic field when a circular conductor of very high radius is subjected to a current of 12A and the point P is at the centre of the conductor. a) 1 b) ∞ c) 0 d) -∞

Last Answer : c) 0

Description : Calculate the magnetic field at a point on the centre of the circular conductor of radius 2m with current 8A. a) 1 b) 2 c) 3 d) 4

Last Answer : b) 2

Description : Compute the conductivity when the current density is 12 units and the electric field is 20 units. Also identify the nature of the material. a) 1.67, dielectric b) 1.67, conductor c) 0.6, dielectric d) 0.6, conductor

Last Answer : c) 0.6, dielectric

Description : Find the current in a conductor with resistance 2 ohm, electric field 2 units and distance 100cm. a) 1A b) 10mA c) 10A d) 100mA

Last Answer : a) 1A

Description : The Snell law is applicable for perpendicular polarisation and the Brewster law is applicable for parallel polarisation. State True/False. a) True b) False

Last Answer : a) True

Description : For a non-zero Ex component and zero Ey component, the polarisation is a) Parallel b) Perpendicular c) Elliptical d) Circular

Last Answer : a) Parallel

Description : Brewster angle is valid for which type of polarisation? a) Perpendicular b) Parallel c) S polarised d) P polarised

Last Answer : b) Parallel

Description : Calculate the magnetic moment when a field of B= 51 units is subjected to a torque of 20 units. a) 0.39 b) 4.2 c) 2.55 d) 3.21

Last Answer : a) 0.39

Description : In an field having a force of 12N and distance 20cm, the torque will be a) 0.24 b) 2.4 c) 24 d) 12/20

Last Answer : b) 2.4

Description : Find the magnetic field intensity due to an infinite sheet of current 5A and charge density of 12j units in the positive y direction and the z component is below the sheet. a) 6 b) 0 c) -6 d) 60k

Last Answer : c) -6

Description : Find the magnetic field intensity due to an infinite sheet of current 5A and charge density of 12j units in the positive y direction and the z component is above the sheet. a) -6 b) 12k c) 60 d) 6

Last Answer : d) 6

Description : In P polarisation, the electric field lies in the same plane as the interface. State True/False. a) True b) False

Last Answer : a) True

Description : A circular loop of mass m and radius r in X-Y plane of a horizontal table as shown in figure. A uniform magnetic field B is applied parallel to X-axis

Last Answer : A circular loop of mass m and radius r in X-Y plane of a horizontal table as shown in figure. A uniform ... . `(mg)/(2pirB)` D. `(pirB)/(mgl)`

Description : iv) A rectangular coil free to rotate is placed in uniform magnetic field with its plane parallel to the magnetic lines of force. Then the coil willa) rotate to maximize the magnetic flux through ... since the magnetic flux through its plane is zero.d) experience the constant torque equal to NBIA

Last Answer : iv) A rectangular coil free to rotate is placed in uniform magnetic field with its plane parallel ... d) experience the constant torque equal to NBIA

Description : The Gauss law for magnetic field is valid in a) Air b) Conductor c) Dielectric d) All cases

Last Answer : d) All cases

Description : Electric field will be maximum outside the conductor and magnetic field will be maximum inside the conductor. State True/False. a) True b) False

Last Answer : a) True

Description : The magnetic field intensity will be zero inside a conductor. State true/false. a) True b) False

Last Answer : b) False

Description : Calculate the potential when a conductor of length 2m is having an electric field of 12.3units. a) 26.4 b) 42.6 c) 64.2 d) 24.6

Last Answer : d) 24.6

Description : Electric field of an infinitely long conductor of charge density λ, is given by E = λ/(2πεh).aN. State True/False. a) True b) False

Last Answer : a) True

Description : Assertion Net torque in the current carrying loop placed in a uniform magnetic field (pointing inwards) is zero. Reasonl Magnetic moment (M) is inward

Last Answer : Assertion Net torque in the current carrying loop placed in a uniform magnetic field (pointing inwards) ... . Reasonl Magnetic moment (M) is inwards.

Description : A current carrying loop is placed in a uniform magnetic field. The torque acting on it does not depend upon

Last Answer : A current carrying loop is placed in a uniform magnetic field. The torque acting on it does not ... turns in the loop D. strength of the current

Description : Polar moment of inertia is a.Applicable to masses whereas moment of inertia is applicable to area only b.The moment of inertia for an area ralative to a line or axis which is out the plane of area ... The moment of inertia for an area relative to a line or axis perpendicular to the plane of the area

Last Answer : e. The moment of inertia for an area relative to a line or axis perpendicular to the plane of the area

Description : Polarizability is defined as the a) Product of dipole moment and electric field b) Ratio of dipole moment to electric field c) Ratio of electric field to dipole moment d) Product of dielectric constant and dipole moment

Last Answer : b) Ratio of dipole moment to electric field

Description : The electric field intensity is defined as a) Force per unit charge b) Force on a test charge c) Force per unit charge on a test charge d) Product of force and charge

Last Answer : c) Force per unit charge on a test charge

Description : Curl is defined as the angular velocity at every point of the vector field. State True/False. a) True b) False

Last Answer : a) True

Description : The force on a charged particle moving parallel to magnetic field lines is: w) in the direction of the field x) zero y) perpendicular to the field z) in the opposite direction of the field

Last Answer : ANSWER: X -- ZERO

Description : The magnitude of the Ex and Ey components are same in which type of polarisation? a) Linear b) Circular c) Elliptical d) Perpendicular

Last Answer : b) Circular

Description : The loss tangent refers to the a) Power due to propagation in conductor to that in dielectric b) Power loss c) Current loss d) Charge loss

Last Answer : a) Power due to propagation in conductor to that in dielectric

Description : Calculate the flux density due to a circular conductor of radius 100nm and current 5A in air. a) 10 b) 100 c) 0.1 d) 1

Last Answer : a) 10

Description : Find the Lorentz force due to a conductor of length 2m carrying a current of 1.5A and magnetic flux density of 12 units. a) 24 b) 36 c) 32 d) 45

Last Answer : c) 32

Description : Find the maximum force of the conductor having length 60cm, current 2.75A and flux density of 9 units. a) 14.85 b) 18.54 c) 84.25 d) 7.256

Last Answer : a) 14.85

Description : Find the flux density due to a conductor of length 6m and carrying a current of 3A(in 10 -7 order) a) 1 b) 10 c) 100 d) 0.1

Last Answer : a) 1

Description : The force on a conductor of length 12cm having current 8A and flux density 3.75 units at an angle of 300 is a) 1.6 b) 2 c) 1.4 d) 1.8

Last Answer : d) 1.8

Description : Find the magnetic flux density of a finite length conductor of radius 12cm and current 3A in air( in 10 -6 order) a) 4 b) 5 c) 6 d) 7

Last Answer : b) 5

Description : Find the force on a conductor of length 12m and magnetic flux density 20 units when a current of 0.5A is flowing through it. a) 60 b) 120 c) 180 d) 200

Last Answer : b) 120

Description : The resultant electric field of two components in the x and y direction having amplitudes 6 and 8 respectively is a) 100 b) 36 c) 64 d) 10

Last Answer : d) 10