A body of mass 20 kg is suspended from a spring which deflects 20mm under this
load. Calculate the frequency of free vibrations in Hz.
a) 3.5
b) 5
c) 6
d) 7

1 Answer

Answer :

a) 3.5

Related questions

Description : A car having a mass of 1000 kg deflects its springs 4 cm under its load. Determine the natural frequency of the car in vertical direction. A 5 Hz B 4.67 Hz C 9.8 Hz D 2.49 Hz

Last Answer : D 2.49 Hz

Description : A car having a mass of 1000 kg deflects its springs 4 cm under its load. Determine the natural frequency of the car in vertical direction. A 5 HzB 4.67 Hz C 9.8 Hz D 2.49 Hz

Last Answer : D 2.49 Hz

Description : A car having a mass of 1000 kg deflects its springs 4 cm under its load. D Determine the natural frequency of the car in vertical direction. (A)5 Hz (B) 4.67 Hz (C) 9.8 Hz (D) 2.49 Hz

Last Answer : (D) 2.49 Hz

Description : A 1 kg mass is suspended by a spring having a stiffness of 0.4 N/mm. Determine the natural frequency. A 20 rad/sec B 30 rad/sec C 20 Hz D 30 Hz

Last Answer : B 30 rad/sec

Description : A 10 Kg mass suspended by spring of stiffness 1000 N/m. the natural frequency of the system after giving excitation will be A. 0 Hz B. 1.59 Hz C. 2 Hz D. 15.9 Hz

Last Answer : B. 1.59 Hz

Description : f the mass is of 10 Kg, find the natural frequency in Hz of the free longitudinal vibrations. The displacement is 0.01mm. a) 44.14 b) 49.85 c) 43.43 d) 46.34

Last Answer : b) 49.85

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? A 12.32 Hz B 4.10 Hz C 6.16 HzD None of the above

Last Answer : C 6.16 Hz

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? A. 12.32 Hz B. 4.10 Hz C. 6.16 Hz D. None of the above

Last Answer : C. 6.16 Hz

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? A) 12.32 Hz B) 4.10 Hz C) 6.16 Hz D) None of the above

Last Answer : C) 6.16 Hz

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m and mass of 20 kg? C ( A )12.32 Hz (B) 4.10 Hz ( C )6.16 Hz (D)None of the above

Last Answer : ( C )6.16 Hz

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 30000 N/m mass of 20 kg? a. 12.32 Hz b. 4.10 Hz c. 6.16 Hz d. None of the above

Last Answer : c. 6.16 Hz

Description : A vehicle suspension system consists of a spring and a damper. The stiffness of the spring is 3.6 kN/m and the damping constant of the damper is 400 Ns/m. If the mass is 50 kg, then the damping factor (d ) and damped natural ... , are a) 0.471 and 1.19 Hz b) 0.471 and 7.48 Hz c) 0.666 and 1.35 Hz

Last Answer : a) 0.471 and 1.19 Hz

Description : A vehicle suspension system consists of a spring and a damper. The stiffness of the spring is 3.6 kN/m and the damping constant of the damper is 400 Ns/m. If the mass is 50 kg, then the damping factor (d ) and damped natural ... .19 Hz b) 0.471 and 7.48 Hz c) 0.666 and 1.35 Hz d) 0.666 and 8.50 Hz

Last Answer : a) 0.471 and 1.19 Hz

Description : The static deflection of a spring under gravity, when a mass of 1 kg is suspended from it, is 1 mm. Assume the acceleration due to gravity g = 10 m/s^2. The natural frequency of this spring-mass system (in rad/s) is A 100 B 150 C 200 D 250

Last Answer : A 100

Description : A cantilever shaft having 50 mm diameter and length of 300 mm has a disc of mass 100 kg at its free enD. The Young’s modulus for the shaft material is 200 GN/m 2 . Calculate the natural longitudinal frequency in Hz. A. 575B. 625 C. 525 D. 550

Last Answer : A. 575

Description : A cantilever shaft having 50 mm diameter and length of 300 mm has a disc of mass 100 kg at its free end. The Young’s modulus for the shaft material is 200 GN/m 2 . Calculate the natural longitudinal frequency in Hz. a) 575 b) 625 c) 525 d) 550

Last Answer : a) 575

Description : Find the displacement in mm of the free longitudinal vibrations if the Natural frequency is 20 Hz. a) 0.1 b) 0.2 c) 0.5 d) 0.6

Last Answer : d) 0.6

Description : A system has a mass of 0.5 kg and spring stiffness of 2452 N/m. Find the natural frequency of the system. A. 5.14 Hz B. 9.14 Hz C. 11.14 Hz D. 28.14 Hz

Last Answer : C. 11.14 Hz

Description : A system has a mass of 0.5 kg and spring stiffness of 2452 N/m. Find the natural frequency of the system. (A) 5.14 Hz (B) 9.14 Hz (C) 11.14 Hz (D) 28.14 Hz

Last Answer : (C) 11.14 Hz

Description : A weight of 50 N is suspended from a spring of stiffness 4000N/m and subjected to a harmonic force of magnitude 60N and frequency 60 Hz. what will be the static displacement of the spring due to maximum applied force A. 0.015m B. 0.15 m C. 15 m D. 150m

Last Answer : B. 0.15 m

Description : Determine natural frequency of a system, which has equivalent spring stiffness of 43200 N/m and mass of 12 kg. A 40.22 rad/sec B 40 Hz C 60 Hz D 60 rad/sec

Last Answer : D 60 rad/sec

Description : A mass of 1 kg is attached to two identical springs each with stiffness k = 20 kN/m as shown in the figure. Under frictionless condition, the natural frequency of the system in Hz is close to * 1 point (A) 32 (B) 23 (C) 16 (D) 11

Last Answer : (A) 32

Description : A car weighing 1000kg deflects its springs by 0.4cm under its load. Determine the natural frequency of 2 car in vertical direction take g=10N/m a) 25 rad/sec b)50 rad/sec c) 2 rad/sec d)none

Last Answer : b)50 rad/sec

Description : Find the displacement in mm of the free longitudinal vibrations if the Natural frequency is 15 Hz. a) 1.1 b) 1.2 c) 1.5 d) 1.6

Last Answer : a) 1.1

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m B. 80 x 10 3 N-s/m C. 42 x 10 3 N-s/m D. None of the above

Last Answer : C. 42 x 10 3 N-s/m

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m b. 80 x 10 3 N-s/m c. 42 x 10 3 N-s/m d. None of the above

Last Answer : c. 42 x 10 3 N-s/m

Description : A cantilever shaft having 50 mm diameter and a length of 300 mm has a disc of mass 100 kg at its free end. The Young’s modulus for the shaft material is 200 GN/m 2 . Determine the frequency of transverse vibrations of the shaft. a) 31 b) 35 c) 37 d) 41

Last Answer : d) 41

Description : The natural frequency (in Hz) of free longitudinal vibrations is equal to a) Square root (k/m) / (2π) b) Square root (g/δ) / (2π) c) 0.4985/δ d) all of the mentioned

Last Answer : d) all of the mentioned

Description : Find the natural frequency in Hz of the free longitudinal vibrations if the displacement is 2mm. a) 11.14 b) 12.38 c) 11.43 d) 11.34

Last Answer : a) 11.14

Description : The natural frequency (in Hz) of free longitudinal vibrations is equal to a) 1/2π√s/m b) 1/2π√g/δ c) 0.4985/δ d) all of the mentioned

Last Answer : d) all of the mentioned

Description : A mass of 10 kg when suspended from a spring causes a static deflection of 0.01m. Find the spring stiffness for the same system. A 9810 N/m B 8910 N/m C 1098 N/m D 9801 N/m

Last Answer : A 9810 N/m

Description : A mass of 10 kg when suspended from a spring causes a static deflection of 0.01m. Find the spring stiffness for the same system. A 9810 N/m B 8910 N/m C 1098 N/m D 9801 N/m

Last Answer : D 9801 N/m

Description : A mass of 10 kg when suspended from a spring causes a static deflection of A 0.01m. Find the spring stiffness for the same system. (A) 9810 N/m (B) 8910 N/m (C)1098 N/m (D) 9801 N/m

Last Answer : A) 9810 N/m

Description : If the spring mass system with m and spring stiffness k is taken to very high altitude, the natural frequency of longitudinal vibrations * 1 point (A) increases (B) decreases (C) remain unchanged (D) may increase or decrease depending upon the value of the mass

Last Answer : (C) remain unchanged

Description : If the spring mass system with m and spring stiffness k is taken to very high altitude , the natural frequency of longitudinal vibrations A) Increases B) Decreases C) Remain unchanged D) May be increase or decrease depending upon the value of the mass

Last Answer : C) Remain unchanged

Description : Calculate the free torsional vibrations of a single motor system from the following data: C = 8 GN/m 2 , L=9m, I = 600 Kg-m 2 , J = 8×10 4 m 4 a) 162,132 b) 172,132 c) 182,132 d) 192,132

Last Answer : b) 172,132

Description : A spring mass system has time period of oscillation of 0.25 sec. What will be the natural frequency of the system? A 1 Hz B 2 rad sec C 4 rad/sec D 4 Hz

Last Answer : D 4 Hz

Description : Calculate the static deflection in μm of transverse vibrations if the frequency is 200Hz. A. 6.21 B. 0.621 C. 62.1 D. 0.006

Last Answer : A. 6.21

Description : Calculate the static deflection in μm of transverse vibrations if the frequency is 200Hz. a) 6 b) 0.6 c) 60 d) 0.006

Last Answer : a) 6

Description : Calculate the natural frequency of transverse vibrations if the static deflection is 0.01mm. a) 157.6 b) 144.8 c) 173.2 d) 154.1

Last Answer : a) 157.6

Description : Calculate natural frequency of damped vibration, if damping factor is 0.52 and natural frequency of the system is 30 rad/sec which consists of machine supported on springs and dashpots. A 21 rad/sec B 25.62 rad/sec C 20.22 Hz D 3.15 Hz

Last Answer : B 25.62 rad/sec

Description : Calculate damped natural frequency, if a spring mass damper system is subjected to periodic disturbing force of 30 N. Damping coefficient is equal to 0.76 times of critical damping coefficient and undamped natural frequency is 5 rad/sec A. 3.99 rad/sec B. 2.13 rad/sec C. 4.12 rad/sec D. 3.24 rad/sec

Last Answer : D. 3.24 rad/sec

Description : Calculate the Polar moment of inertia in m 4 of a single motor system from the following data: C = 8 GN/m 2 , L=9m, I = 600 Kg-m 2 , f=10 Hz a) 0.00027b) 0.00032 c) 0.00045 d) 0.00078

Last Answer : a) 0.00027

Description : If the mass increases, then the frequency of the free vibrations increases. a) True b) False

Last Answer : b) False

Description : In spring mass experiment, the natural frequency of 10 kg mass was found to be 12 rad/sec. the stiffness of the spring is A. 800 N/m B. 1200 N/m C. 1440 N/m D. 2000 N/m

Last Answer : C. 1440 N/m

Description : A cantilever shaft has a diameter of 6 cm and the length is 40cm, it has a disc of mass 125 kg at its free end. The Young’s modulus for the shaft material is 250 GN/m2. Calculate the static deflection in nm. a) 0.001 b) 0.083c) 1.022 d) 0.065

Last Answer : a) 0.001

Description : In a 2-mass 3 spring vibrating system the two masses each are of 9.8 kg coupling spring is having a stiffness of 3430 N/m whereas the other two springs have each a stiffness of 8820 N/m. The two natural frequencies in rad /sec are A) 10 & 20 B) 20 & 30 C) 30 & 40D) 40 & 50

Last Answer : C) 30 & 40

Description : The time period of a simple pendulum does not depend upon the mass of the body suspended at the free end of the string. This statement is known as ___________ . (A) law of gravity (B) law of mass (C) law of isochronism (D) law of length

Last Answer : (B) law of mass

Description : When the body vibrates under the influence of external force, then the body is said to be under ___________ . * 1 point (A) free vibrations (B) natural vibrations (C) forced vibrations (D) damped vibrations

Last Answer : (C) forced vibrations

Description : A spring-mass system has a natural frequency of 10 rad/sec. When the spring constant is reduced by 800 N/m, the frequency is altered by 45 percent. Find the mass and spring constant of the original system. a)11.47kg and 1147.95N/m b)8.95kg and 895.25N/m c) 7.265kg and 726.5N/m d)None

Last Answer : a)11.47kg and 1147.95N/m