When the speed of rotation of a shaft equals one of the natural frequencies of the shaft, it is
called____________speed.

1 Answer

Answer :

Ans- Critical

Related questions

Description : Critical speed is expressed as A rotation of shaft in degrees B rotation of shaft in radians C rotation of shaft in minutes D natural frequency of the shaft

Last Answer : D natural frequency of the shaft

Description : Critical speed is expressed as a) rotation of shaft in degrees b) rotation of shaft in radians c) rotation of shaft in minutes d) natural frequency of the shaft

Last Answer : d) natural frequency of the shaft

Description : Critical speed is expressed as ______. A) rotation of the shaft in degrees (B) rotation of the shaft in radians (C) rotation of the shaft in minutes (D) the natural frequency of the shaf

Last Answer : (D) the natural frequency of the shaft

Description : Critical speed is expressed as a) rotation of shaft in degrees b) rotation of shaft in radians c) rotation of shaft in minutes d) natural frequency of the shaft

Last Answer : d) natural frequency of the shaft

Description : If two discs are attached to one shaft at its both end, then it has_____ number of natural frequencies. A Infinite B One C Two D None of the mentioned

Last Answer : B One

Description : The speed at which the shaft runs so that the additional deflection from the axis of rotation of the shaft becomes infinite, is known as _________ * 1 point (A) Whirling speed (B) Rotational speed (C) Stabilizing speed (D) Reciprocating speed

Last Answer : (A) Whirling speed

Description : The speed at which the shaft runs so that the additional deflection of the shaft from the axis of rotation becomes ___________, is known as critical or whirling speed. (A) zero (B) minimum (C) maximum (D) infinite

Last Answer : (D) infinite

Description : The speed at which the shaft runs so that the additional deflection from the axis of rotation of the shaft becomes infinite, is known as _________ A. Whirling speed B. Rotational speed C. Stabilizing speed D. Reciprocating speed

Last Answer : A. Whirling speed

Description : In most practical situation the speed of rotation of the shaft is usually A) Much below the critical speed B) Much above the critical speed C) Near about the critical speed D) Having no relationship with critical speed

Last Answer : B) Much above the critical speed

Description : The critical speed of a shaft with a disc supported in between is equal to the natural frequency of the system in A Transverse vibrations B Torsional vibrations C Longitudinal vibrations D None of the mentioned

Last Answer : A Transverse vibrations

Description : Critical speed of shaft and disc system A) Is equal to natural frequency of the system in transverse vibration B) Is equal to natural frequency of the system in torsional vibration C) Is ... of the system in longitudinal vibration D) Bears no relationship to any of the system natural frequency

Last Answer : A) Is equal to natural frequency of the system in transverse vibration

Description : The critical speed of a shaft with a disc supported in between is equal to the natural frequency of the system in a) transverse vibrations b) torsional vibrations c) longitudinal vibrations d) none of the mentioned

Last Answer : a) transverse vibrations

Description : The critical speed of a shaft with a disc supported in between is equal to the natural frequency of the system in a) transverse vibrations b) torsional vibrations c) longitudinal vibrations d) none of the mentioned

Last Answer : a) transverse vibrations

Description : In semi-definite system one of the natural frequencies is A Zero B One C Two D Infinite

Last Answer : A Zero

Description : The number of natural frequencies in case of cantilever is A Zero B One C Two D Infinite

Last Answer : D Infinite

Description : In a 2-mass 3 spring vibrating system the two masses each are of 9.8 kg coupling spring is having a stiffness of 3430 N/m whereas the other two springs have each a stiffness of 8820 N/m. The two natural frequencies in rad /sec are A) 10 & 20 B) 20 & 30 C) 30 & 40D) 40 & 50

Last Answer : C) 30 & 40

Description : In semi definite system, one of the natural frequencies is found to 15 Hz. The other natural frequency will be A. 15 Hz B. 0 Hz C. 30 Hz D. None of these

Last Answer : B. 0 Hz

Description : The vibrations can be controlled by A. Controlling the natural frequencies B. Using proper damping devices C. Introducing vibration absorbers and vibration isolators D. All the above

Last Answer : D. All the above

Description : In semidefinite system one of the natural frequencies is A. Zero B. Non-zero C. Infinite one D. One

Last Answer : A. Zero

Description : The number of natural frequencies in a two rotor system is A. Infinite B. Zero C. Two D. Four

Last Answer : C. Two

Description : The number of distinct natural frequencies for an n-degree-of-freedom system can be a. 1 b. ∞ c. n

Last Answer : c. n

Description : FFT analyzer can be used to find the ___________. (A) natural frequencies (B) mode shapes(C) both natural frequencies and mode shapes (D) none of the above

Last Answer : (C) both natural frequencies and mode shapes

Description : A cantilever shaft having 50 mm diameter and length of 300 mm has a disc of mass 100 kg at its free enD. The Young’s modulus for the shaft material is 200 GN/m 2 . Calculate the natural longitudinal frequency in Hz. A. 575B. 625 C. 525 D. 550

Last Answer : A. 575

Description : For the same dimensions of the shaft which of the following has the greater natural frequency? A. Transverse B. Longitudinal C. Depends on thickness D. Depends upon length

Last Answer : B. Longitudinal

Description : For the same dimensions of the shaft which of the following has the greater natural frequency? (A) Transverse (B) Longitudinal (C) Depends on thickness (D) Depends upon length

Last Answer : (B) Longitudinal

Description : For the same dimensions of the shaft which of the following has the greater natural frequency? a) Transverse b) Longitudinal c) Depends on thickness d) Depends upon length

Last Answer : b) Longitudinal

Description : A cantilever shaft having 50 mm diameter and length of 300 mm has a disc of mass 100 kg at its free end. The Young’s modulus for the shaft material is 200 GN/m 2 . Calculate the natural longitudinal frequency in Hz. a) 575 b) 625 c) 525 d) 550

Last Answer : a) 575

Description : Rotor shaft of a large electric motor supported between short bearings at both ends shows a deflection of 1.8 mm in middle of motor. Assuming rotor to be perfectly balanced and supported at knife edges at both ends, likely critical speed (rpm) of shaft isA 350 B 4430 C 705 D 2810

Last Answer : C 705

Description : The factor which affects critical speed shaft is....... A. eccentricity B. span of shaft C. diameter of disc D. all of above

Last Answer : D. all of above

Description : The critical speed of a shaft depends upon its A. Mass B. Stiffness C. Mass and stiffnessD. Stiffness and eccentricity

Last Answer : C. Mass and stiffness

Description : If the static deflection is 1.665×10 -3 m, calculate the critical speed of the shaft in rps. Centre of disc at 0.25m away from centre of axis of shaft. A. 8.64 B. 9.64 C. 10.64 D. 12.2

Last Answer : D. 12.2

Description : The critical speed of a shaft is affected by A. Diameter of the disc B. Eccentricity C. Span of shaft D. All of above

Last Answer : D. All of above

Description : Critical speed of shaft having a rotating disc in the middle is A) x/e = 1 / ( r^2 - 1 ) B) x/e = 1 / ( r^2 + 1 ) C) x/e = 1 / ( r^2 - 1^2 ) D) x/e = ( 1 + r) / ( r^2 – 1 )

Last Answer : A) x/e = 1 / ( r^2 - 1 )

Description : The rotating shaft or rotor vibrates with excessive lateral vibration at angular speed at which occurs is called as A) rotating speed B) critical speed C) vibrating speed D) None of the above

Last Answer : B) critical speed

Description : In measuring critical speed of shaft experiment, it was found that the frequency ratio is 0.707 when the eccentricity is 0.05 m. what will be the displacement of the system. A. 0.05 m B. 0.005 m C. 0.5 m D. Infinite

Last Answer : A. 0.05 m

Description : The factors which affects the critical speed of the shaft is A. Eccentricity B. Diameter of the Disc C. Span of the shaft D. All the above

Last Answer : D. All the above

Description : The factor which affects the critical speed of a shaft is a) diameter of the disc b) span of the shaft c) eccentricity d) all of the mentioned

Last Answer : d) all of the mentioned

Description : The factor which affects the critical speed of a shaft is a) diameter of the disc b) span of the shaft c) eccentricity d) all of the mentioned

Last Answer : d) all of the mentioned

Description : The unbalanced force caused by an eccentric mass m rotating at an angular speed v and located at a distance r from the axis of rotation is 2 a. mr ω 2 b. mgω 2 c. mr ω 2

Last Answer : c. mr ω 2

Description : Beats phenomenon occurs when a vibrating system is subjected to two different frequencies which are A) Quite different B) Equal C) Slightly different D) Integral multiple of each other

Last Answer : C) Slightly different

Description : During free vibration, different degrees of freedom oscillate at different frequencies.

Last Answer : False

Description : In a slider crank mechanism, the crank is rotating at 200 rpm. If length of connecting rod is 8 mts and crank shaft is 2 mts, velocity of crosshead at 30? rotation of crank shaft equals. a.30.2 m/s b.33.2 m/s c.35.8 mts/s d.107 dynes e.25.5 m/s

Last Answer : e. 25.5 m/s

Description : In Fullarton Tachometer, a thin strip with a ______ is attached at one of its ends. (A) mass (B) spring (C) damper (D) shaft

Last Answer : (A) mass

Description : For a two-rotor system, the length of one shaft (A) is twice the other (B), then what is the relation between the mass moment of inertia of the shafts. A 2I(A) = I(B) B I(A) = 2I(B) C I(A) = I(B) D 2I(A) = 3I(B)

Last Answer : A 2I(A) = I(B)

Description : A cantilever shaft having 50 mm diameter and a length of 300mm has a disc of mass 100 kg at its free end. The Young’s modulus for the shaft material is 200 GN/m^2. Determine the static deflection of shaft in mm. A 0.144 B 0.244 C 0.344 D 0.444

Last Answer : A 0.144

Description : When the particles of the shaft or disc move in a circle about the axis of the shaft, then the vibrations are known as ___________ . A Longitudinal vibrations B Transverse vibrations C Torsional vibrations D None of these

Last Answer : C Torsional vibrations

Description : Which of the following statements is/are true? A. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction B. Shaft vibrates with maximum frequency when rotors ... C. Zero node behavior is observed in rotors rotating in opposite direction D. All of the above

Last Answer : A. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction

Description : A shaft of diameter d carries two discs at its two ends. The lowest torsional frequency is ω n . If the diameter is doubled, then the lowest torsional frequency becomes A 4ω n B ω n /2 C ω n /4 D 4ω n

Last Answer : D 4ω n

Description : A shaft of length l carries two discs at its two ends. The lowest torsional frequency is ω n . If the shaft length is doubled, then the lowest torsional frequency becomes A ω n /2 B ω n /√2 C √2ω n D 2ω n

Last Answer : B ω n /√2

Description : A shaft carrying three rotors will have A No node B Two nodes C One node D Three nodes

Last Answer : B Two nodes