Rotor shaft of a large electric motor supported between short bearings at both
ends shows a deflection of 1.8 mm in middle of motor. Assuming rotor to be
perfectly balanced and supported at knife edges at both ends, likely critical speed
(rpm) of shaft isA 350
B 4430
C 705
D 2810

1 Answer

Answer :

C 705

Related questions

Description : If the static deflection is 1.665×10 -3 m, calculate the critical speed of the shaft in rps. Centre of disc at 0.25m away from centre of axis of shaft. A. 8.64 B. 9.64 C. 10.64 D. 12.2

Last Answer : D. 12.2

Description : The rotating shaft or rotor vibrates with excessive lateral vibration at angular speed at which occurs is called as A) rotating speed B) critical speed C) vibrating speed D) None of the above

Last Answer : B) critical speed

Description : The speed at which the shaft runs so that the additional deflection of the shaft from the axis of rotation becomes ___________, is known as critical or whirling speed. (A) zero (B) minimum (C) maximum (D) infinite

Last Answer : (D) infinite

Description : The critical speed of a shaft with a disc supported in between is equal to the natural frequency of the system in A Transverse vibrations B Torsional vibrations C Longitudinal vibrations D None of the mentioned

Last Answer : A Transverse vibrations

Description : The critical speed of a shaft with a disc supported in between is equal to the natural frequency of the system in a) transverse vibrations b) torsional vibrations c) longitudinal vibrations d) none of the mentioned

Last Answer : a) transverse vibrations

Description : The critical speed of a shaft with a disc supported in between is equal to the natural frequency of the system in a) transverse vibrations b) torsional vibrations c) longitudinal vibrations d) none of the mentioned

Last Answer : a) transverse vibrations

Description : To protect the rotor of a motor disassembled for maintenance or overhaul, it should be ___________________. A. suspended by wire slings in one corner of the shop B. stowed upright on its shaft C. supported by two 'V' notched wood blocks D. returned to the frame as soon as the bearings are removed

Last Answer : Answer: C

Description : A shaft carrying two rotor at its ends will have A No node B Two nodes C One node D Three nodes

Last Answer : C One node

Description : Critical speed of shaft having a rotating disc in the middle is A) x/e = 1 / ( r^2 - 1 ) B) x/e = 1 / ( r^2 + 1 ) C) x/e = 1 / ( r^2 - 1^2 ) D) x/e = ( 1 + r) / ( r^2 – 1 )

Last Answer : A) x/e = 1 / ( r^2 - 1 )

Description : A cantilever shaft having 50 mm diameter and a length of 300mm has a disc of mass 100 kg at its free end. The Young’s modulus for the shaft material is 200 GN/m^2. Determine the static deflection of shaft in mm. A 0.144 B 0.244 C 0.344 D 0.444

Last Answer : A 0.144

Description : A cantilever shaft having 50 mm diameter and a length of 300 mm has a disc of mass 100 kg at its free end. The Young’s modulus for the shaft material is 200 GN/m 3 . Determine the static deflection of the shaft in mm. a) 0.147 b) 0.213 c) 0.132 d) 0.112

Last Answer : a) 0.147

Description : The speed at which the shaft runs so that the additional deflection from the axis of rotation of the shaft becomes infinite, is known as _________ * 1 point (A) Whirling speed (B) Rotational speed (C) Stabilizing speed (D) Reciprocating speed

Last Answer : (A) Whirling speed

Description : The speed at which the shaft runs so that the additional deflection from the axis of rotation of the shaft becomes infinite, is known as _________ A. Whirling speed B. Rotational speed C. Stabilizing speed D. Reciprocating speed

Last Answer : A. Whirling speed

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m B. 80 x 10 3 N-s/m C. 42 x 10 3 N-s/m D. None of the above

Last Answer : C. 42 x 10 3 N-s/m

Description : Calculate coefficient of viscous damper, if the system is critically damped. Consider the following data: 1. Mass of spring mass damper system = 350 kg 2. Static deflection = 2 x 10 -3 m 3. Natural frequency of the system = 60 rad/sec ... /m b. 80 x 10 3 N-s/m c. 42 x 10 3 N-s/m d. None of the above

Last Answer : c. 42 x 10 3 N-s/m

Description : To protect the rotor of a motor disassembled for maintenance or overhaul, it should be ___________________. A. suspended by wire slings in one corner of the shop B. wrapped in several layers of heavy ... flat wood blocks on the workbench D. returned to the frame as soon as the bearings are removed

Last Answer : Answer: B

Description : Critical speed is expressed as A rotation of shaft in degrees B rotation of shaft in radians C rotation of shaft in minutes D natural frequency of the shaft

Last Answer : D natural frequency of the shaft

Description : The factor which affects critical speed shaft is....... A. eccentricity B. span of shaft C. diameter of disc D. all of above

Last Answer : D. all of above

Description : The critical speed of a shaft depends upon its A. Mass B. Stiffness C. Mass and stiffnessD. Stiffness and eccentricity

Last Answer : C. Mass and stiffness

Description : The critical speed of a shaft is affected by A. Diameter of the disc B. Eccentricity C. Span of shaft D. All of above

Last Answer : D. All of above

Description : In most practical situation the speed of rotation of the shaft is usually A) Much below the critical speed B) Much above the critical speed C) Near about the critical speed D) Having no relationship with critical speed

Last Answer : B) Much above the critical speed

Description : Critical speed of shaft and disc system A) Is equal to natural frequency of the system in transverse vibration B) Is equal to natural frequency of the system in torsional vibration C) Is ... of the system in longitudinal vibration D) Bears no relationship to any of the system natural frequency

Last Answer : A) Is equal to natural frequency of the system in transverse vibration

Description : In measuring critical speed of shaft experiment, it was found that the frequency ratio is 0.707 when the eccentricity is 0.05 m. what will be the displacement of the system. A. 0.05 m B. 0.005 m C. 0.5 m D. Infinite

Last Answer : A. 0.05 m

Description : The factors which affects the critical speed of the shaft is A. Eccentricity B. Diameter of the Disc C. Span of the shaft D. All the above

Last Answer : D. All the above

Description : Critical speed is expressed as a) rotation of shaft in degrees b) rotation of shaft in radians c) rotation of shaft in minutes d) natural frequency of the shaft

Last Answer : d) natural frequency of the shaft

Description : The factor which affects the critical speed of a shaft is a) diameter of the disc b) span of the shaft c) eccentricity d) all of the mentioned

Last Answer : d) all of the mentioned

Description : Critical speed is expressed as ______. A) rotation of the shaft in degrees (B) rotation of the shaft in radians (C) rotation of the shaft in minutes (D) the natural frequency of the shaf

Last Answer : (D) the natural frequency of the shaft

Description : Critical speed is expressed as a) rotation of shaft in degrees b) rotation of shaft in radians c) rotation of shaft in minutes d) natural frequency of the shaft

Last Answer : d) natural frequency of the shaft

Description : The factor which affects the critical speed of a shaft is a) diameter of the disc b) span of the shaft c) eccentricity d) all of the mentioned

Last Answer : d) all of the mentioned

Description : The reactive power drawn by a motor from an AC generator is the power which is _____________. A. used to establish the magnetic field of the motor B. lost in overcoming friction in the ... by current flow through the windings D. transmitted directly through the rotor shaft to perform useful work

Last Answer : Answer: A

Description : A rolled steel joist is simply supported at its ends and carries a uniformly distributed load which  causes a maximum deflection of 10 mm and slope at the ends of 0.002 radian. The length of the  joist will be,  (A) 10 m  (B) 12 m  (C) 14 m  (D) 16 m 

Last Answer : (D) 16 m 

Description : A beam 3m long simply supported at its ends ,is carrying a point load W at the centre.If the slope at the ends of the beam should not exceed 10,find the deflection at the centre of beam? a.18.41 mm b.13.45 mm c.17.45 mm d.21.67 mm.

Last Answer : c.17.45 mm

Description : A beam of uniform rectangular section 200 mm wide and 300mm deep is simply supported at its ends.It carries a uniformly distributed load of 9KN/m run over the entire span of 5m.If E=1×104 N/mm2, what is the maximum deflection? a.14.26 mm b.17.28 mm c.18.53 mm d.16.27 mm.

Last Answer : d.16.27 mm.

Description : For a two-rotor system, the length of one shaft (A) is twice the other (B), then what is the relation between the mass moment of inertia of the shafts. A 2I(A) = I(B) B I(A) = 2I(B) C I(A) = I(B) D 2I(A) = 3I(B)

Last Answer : A 2I(A) = I(B)

Description : Which of the following statements is/are true? A. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction B. Shaft vibrates with maximum frequency when rotors ... C. Zero node behavior is observed in rotors rotating in opposite direction D. All of the above

Last Answer : A. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction

Description : Which of the following statements is/are true? A) Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction B) Shaft vibrates with maximum frequency when rotors ... C) Zero node behavior is observed in rotors rotating in opposite direction D) All of the above

Last Answer : A) Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction

Description : Which of the following statements is/are true? a. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction b. Shaft vibrates with maximum frequency when rotors ... c. Zero node behavior is observed in rotors rotating in opposite direction d. All of the above

Last Answer : a. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction

Description : δ = (W a 2 b 2 ) / (3 EIL) is the value of deflection for ______ A. simply supported beam which has central point load B. simply supported beam which has eccentric point load C. simply supported beam which has U.D.L. point load per unit length D. fixed beam which has central point load

Last Answer : B. simply supported beam which has eccentric point load

Description : δ = (W a 2 b 2 ) / (3 EIl) is the value of deflection for ______ a. simply supported beam which has central point load b. simply supported beam which has eccentric point load c. simply supported beam which has U.D.L. point load per unit length d. fixed beam which has central point load

Last Answer : b. simply supported beam which has eccentric point load

Description : A cantilever shaft has a diameter of 6 cm and the length is 40cm, it has a disc of mass 125 kg at its free end. The Young’s modulus for the shaft material is 250 GN/m2. Calculate the static deflection in nm. a) 0.001 b) 0.083c) 1.022 d) 0.065

Last Answer : a) 0.001

Description : In ______ machines, the size of the shaft is decided by the critical speed which depends on the deflection of the shaft. (a) small (b) medium (c) large (d) any of the above.

Last Answer : (c) large

Description : In Fullarton Tachometer, a thin strip with a ______ is attached at one of its ends. (A) mass (B) spring (C) damper (D) shaft

Last Answer : (A) mass

Description : A shaft of diameter d carries two discs at its two ends. The lowest torsional frequency is ω n . If the diameter is doubled, then the lowest torsional frequency becomes A 4ω n B ω n /2 C ω n /4 D 4ω n

Last Answer : D 4ω n

Description : A shaft of length l carries two discs at its two ends. The lowest torsional frequency is ω n . If the shaft length is doubled, then the lowest torsional frequency becomes A ω n /2 B ω n /√2 C √2ω n D 2ω n

Last Answer : B ω n /√2

Description : A shaft carrying two rotors at its ends will have A. No node B. One node C. Two node D. Three nodes

Last Answer : B. One node

Description : The static deflection of a spring under gravity, when a mass of 1 kg is suspended from it, is 1 mm. Assume the acceleration due to gravity g = 10 m/s^2. The natural frequency of this spring-mass system (in rad/s) is A 100 B 150 C 200 D 250

Last Answer : A 100

Description : From above numerical find the static deflection A 0.0245 mm B 0.0025 mm C 0.0245 m D 0.0245 cm

Last Answer : C 0.0245 m

Description : A cantilever shaft having 50 mm diameter and length of 300 mm has a disc of mass 100 kg at its free enD. The Young’s modulus for the shaft material is 200 GN/m 2 . Calculate the natural longitudinal frequency in Hz. A. 575B. 625 C. 525 D. 550

Last Answer : A. 575

Description : A cantilever shaft having 50 mm diameter and a length of 300 mm has a disc of mass 100 kg at its free end. The Young’s modulus for the shaft material is 200 GN/m 2 . Determine the frequency of transverse vibrations of the shaft. a) 31 b) 35 c) 37 d) 41

Last Answer : d) 41