When heavy rotating masses are connected by a shaft and equal and opposite torques are
applied to these masses (rotors)
A. The rotors vibrate torsionally in the same direction.
B. The rotors vibrate torsionally in the opposite direction.
C. There is one point on the axis of shaft which remains undisturbed by vibration.
D. Both (B) and (C)

1 Answer

Answer :

D. Both (B) and (C)

Related questions

Description : Which of the following statements is/are true? A. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction B. Shaft vibrates with maximum frequency when rotors ... C. Zero node behavior is observed in rotors rotating in opposite direction D. All of the above

Last Answer : A. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction

Description : Which of the following statements is/are true? A) Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction B) Shaft vibrates with maximum frequency when rotors ... C) Zero node behavior is observed in rotors rotating in opposite direction D) All of the above

Last Answer : A) Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction

Description : Which of the following statements is/are true? a. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction b. Shaft vibrates with maximum frequency when rotors ... c. Zero node behavior is observed in rotors rotating in opposite direction d. All of the above

Last Answer : a. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction

Description : If the particle of a body vibrate along a circular arc, whose centre lies on the axis of the shaft then the body is said to have A) Transverse vibration B) Longitudinal vibration C) Torsional vibration D) None of the above

Last Answer : C) Torsional vibration

Description : The principal of mode vibration can be given by A) Two masses vibrate at Different frequency and in same phase B) Two masses vibrate at Different frequency and in Different phase C) Two masses vibrate at same frequency and in Different phase D) Two masses vibrate at same frequency and in same phase

Last Answer : D) Two masses vibrate at same frequency and in same phase

Description : When two masses vibrate at the same frequency and in phase, it is called a principal mode of vibration A. True B. False C. Does not depend on vibration D. None of the above

Last Answer : A. True

Description : In a two-rotor system, torsional vibration occurs only if the rotors are moving in the ______ direction. (A) same (B) opposite (C) either same or opposite (D) none of the above

Last Answer : (B) opposite

Description : In a two-rotor system, torsional vibration occurs only if the rotors are moving in the ______ direction. A. same B. opposite C. either same or opposite D. none of the above

Last Answer : B. opposite

Description : There are n rotors mounted on the shaft and when subjected to torsional vibration there will be A. N nodes B. (N-1) nodes C. (N+1) nodesD. Any number of nodes

Last Answer : B. (N-1) nodes

Description : The rotating shaft or rotor vibrates with excessive lateral vibration at angular speed at which occurs is called as A) rotating speed B) critical speed C) vibrating speed D) None of the above

Last Answer : B) critical speed

Description : Rotating shafts tends to vibrate violently in transverse directions at certain speed. This speed is called A Critical speedB Whipping speed C Whirling speed D All of the mentioned

Last Answer : D All of the mentioned

Description : A shaft carrying three rotors will have A No node B Two nodes C One node D Three nodes

Last Answer : B Two nodes

Description : A shaft carrying three rotors will have A. No node B. One node C. Two node D. Three nodes

Last Answer : C. Two node

Description : A shaft carrying two rotors at its ends will have A. No node B. One node C. Two node D. Three nodes

Last Answer : B. One node

Description : In the diagram shown below, if rotor X and rotor Z rotate in same direction and rotor Y rotates in opposite direction, then specify the type of node vibration. A. Three node vibration B. Two node vibration C. Single node vibration D. None of the above

Last Answer : B. Two node vibration

Description : In the diagram shown below, if rotor X and rotor Z rotate in same direction and rotor Y rotates in opposite direction, then specify the type of node vibration. A. Three node vibration B. Two node vibration C. Single node vibration D. None of the above

Last Answer : B. Two node vibration

Description : In the diagram shown below, if rotor X and rotor Z rotate in same direction and rotor Y rotates in opposite direction, then specify the no of degree of freedom vibration.a. Three degree of freedom vibration b. Two degree of freedom vibration c. Single degree of freedom vibration d. None of the above

Last Answer : b. Two degree of freedom vibration

Description : Critical speed of shaft and disc system A) Is equal to natural frequency of the system in transverse vibration B) Is equal to natural frequency of the system in torsional vibration C) Is ... of the system in longitudinal vibration D) Bears no relationship to any of the system natural frequency

Last Answer : A) Is equal to natural frequency of the system in transverse vibration

Description : Centrifugal absorber is used to reduce A) Centrifugal force in rotating system B) Torsional vibration of rotating system C) Vibration in linear system D) Transverse vibrations

Last Answer : B) Torsional vibration of rotating system

Description : The condition to be fulfilled in the design of spring for vibration isolation of a system where excitation is due to a rotating unbalance is A) ω ωn D) ω >> ωn

Last Answer : A) ω

Description : Critical speed of shaft having a rotating disc in the middle is A) x/e = 1 / ( r^2 - 1 ) B) x/e = 1 / ( r^2 + 1 ) C) x/e = 1 / ( r^2 - 1^2 ) D) x/e = ( 1 + r) / ( r^2 – 1 )

Last Answer : A) x/e = 1 / ( r^2 - 1 )

Description : The speed at which the shaft runs so that the additional deflection from the axis of rotation of the shaft becomes infinite, is known as _________ * 1 point (A) Whirling speed (B) Rotational speed (C) Stabilizing speed (D) Reciprocating speed

Last Answer : (A) Whirling speed

Description : _______ torsional vibrations will occur in a two-rotor system only if both rotors have the same frequency. (A) Free (B) Forced (C) Unbalanced (D) None of the above

Last Answer : (A) Free

Description : Free torsional vibrations will occur in a two rotor system only if both rotors have same frequency. a) True b) False

Last Answer : a) True

Description : The unbalanced force caused by an eccentric mass m rotating at an angular speed v and located at a distance r from the axis of rotation is 2 a. mr ω 2 b. mgω 2 c. mr ω 2

Last Answer : c. mr ω 2

Description : During resonance A the Vibrations remains unaffected B no vibration occurs C low amplitude of vibration occurs D high amplitude of vibration occurs

Last Answer : D high amplitude of vibration occurs

Description : During resonance A. High amplitude of vibration occurs B. Low amplitude of vibration occurs C. No vibration occurs D. Vibration remains unaffected

Last Answer : A. High amplitude of vibration occurs

Description : The accelerometer is used as a transducer to measure earthquake in Richter scale. Its design is based on the principle that A Its natural frequency is very low in comparison to the frequency ... is equal to the frequency of vibration D Measurement of vibratory motion is without any reference point

Last Answer : C Its natural frequency is equal to the frequency of vibration

Description : The accelerometer is used as a transducer to measure earthquake in Richter scale. Its design is based on the principle that a) its natural frequency is very low in comparison to the frequency ... is equal to the frequency of vibration d) measurement of vibratory motion is without any reference point

Last Answer : c) its natural frequency is equal to the frequency of vibration

Description : The speed at which the shaft runs so that the additional deflection of the shaft from the axis of rotation becomes ___________, is known as critical or whirling speed. (A) zero (B) minimum (C) maximum (D) infinite

Last Answer : (D) infinite

Description : When the particles of the shaft or disc move in a circle about the axis of the shaft, then the vibrations are known as ___________ . A Longitudinal vibrations B Transverse vibrations C Torsional vibrations D None of these

Last Answer : C Torsional vibrations

Description : The speed at which the shaft runs so that the additional deflection from the axis of rotation of the shaft becomes infinite, is known as _________ A. Whirling speed B. Rotational speed C. Stabilizing speed D. Reciprocating speed

Last Answer : A. Whirling speed

Description : The vibrations perpendicular to the shaft axis are known as A Transverse B Longitudinal C Torsional D None of the mentioned

Last Answer : A Transverse

Description : If the static deflection is 1.665×10 -3 m, calculate the critical speed of the shaft in rps. Centre of disc at 0.25m away from centre of axis of shaft. A. 8.64 B. 9.64 C. 10.64 D. 12.2

Last Answer : D. 12.2

Description : When the particles of the shaft or disc move in a circle about the axis of the shaft, then the vibrations are known as ___________ . A. longitudinal vibrations B. transverse vibrations C. torsional vibrations D. none of these

Last Answer : C. torsional vibrations

Description : A simple pendulum is found to vibrate at a frequency of 0.5Hz in vacuum and0.45 Hz in a viscous fluid medium. Find the damping factor. 0.5122 (B) 0.9272 (C) 0.4359 (D) 0.2568

Last Answer : (C) 0.4359

Description : A simple pendulum is found to vibrate at a frequency of 0.5Hz in vacuum and 0.45Hz in a viscous fluid medium. Find the damping factor. A 0.5122 B 0.9237 C 0.4359 D 0.2568

Last Answer : C 0.4359

Description : In vibration isolation system, if ω/ωn < 2, then for all values of damping factor, the transmissibility will be A less than unity B equal to unity C greater than unity D zero

Last Answer : C greater than unity

Description : In coulomb damping the frequency of damped vibrations is A Equal to that of undamped vibrations B Less than that of undamped vibrationsC More than that of undamped vibrations D Independent of the frequency of undamped vibration

Last Answer : A Equal to that of undamped vibrations

Description : In vibration isolation system, the transmissibility will be equal to unity, for all values of damping factor, if ω/ωn is A. Equal to 1 B. Equal to √2 C. Less than √2 D. Greater than √2

Last Answer : B. Equal to √2

Description : Which of the following condition should be satisfied in the design of a vibration absorber ? A) Natural frequency of the auxiliary system should be equal to the natural frequency of the main ... D) Natural frequency of the auxiliary system should be twice natural frequency of the main system

Last Answer : A) Natural frequency of the auxiliary system should be equal to the natural frequency of the main system

Description : In case of viscous damping the frequency of damped vibration is A) Equal to that of undamped vibrations B) Less than that of undamped vibrations C) Greater than that of undamped vibrations D) Independent than that of undamped vibrations

Last Answer : B) Less than that of undamped vibrations

Description : When the frequency of external exciting force is equal to the natural frequency of the vibration of the system A. The amplitude of vibration is zero B. The amplitude of vibration is significantly small C. The amplitude of vibration is very large D. The amplitude does not change

Last Answer : C. The amplitude of vibration is very large

Description : In vibration isolation system, if ω/ω n < 2, then for all values of damping factor, the transmissibility will be a) less than unity b) equal to unity c) greater than unity d) zero

Last Answer : c) greater than unity

Description : The accelerometer is used as a transducer to measure earthquake in Richter scale. Its design is based on the principle that ______. (A) its natural frequency is very low in comparison to the ... is equal to the frequency of vibration (D) measurement of vibratory motion is without any reference poin

Last Answer : (C) its natural frequency is equal to the frequency of vibration

Description : The accelerometer is used as a transducer to measure earthquake in Richter scale. Its design is based on the principle that a) its natural frequency is very low in comparison to the frequency ... is equal to the frequency of vibration d) measurement of vibratory motion is without any reference poin

Last Answer : c) its natural frequency is equal to the frequency of vibration

Description : In vibration isolation system, if ω/ω n < 2, then for all values of damping factor, the transmissibility will be a) less than unity b) equal to unity c) greater than unity d) zero

Last Answer : c) greater than unity

Description : n vibration isolation system, if ω/ω n is less than √2 , then for all values of the damping factor, the transmissibility will be a) less than unity b) equal to unity c) greater than unity d) zero

Last Answer : c) greater than unity

Description : A synchronous motor maintains synchronism with the rotating field because _____________. A. field strength varies directly with rotor slip B. DC current applied to the rotor coils causes the rotor ... the flux created by the excitation current D. the stator flux rotates in the opposite direction

Last Answer : Answer: B

Description : In damped vibrations, the amplitude of the resulting vibration gradually reduces. This is due to the reason that an amount of energy is always dissipated to overcome the ________ * 1 point (A) Frictional resistance (B) Work done(C) Fluid pressure (D) Air pressure

Last Answer : (A) Frictional resistance