Which type of frequency measuring instrument has multiple reeds of different natural
frequency to measure vibrations?
A. Fullarton tachometer
B. Frahm Tachometer
C. Both A. and B.
D. None of the above

1 Answer

Answer :

B. Frahm Tachometer

Related questions

Description : In Fullarton Tachometer, a thin strip with a ______ is attached at one of its ends. (A) mass (B) spring (C) damper (D) shaft

Last Answer : (A) mass

Description : In damped free vibrations, which parameters indicate vibrations? A) Natural frequency B) Rate of decay of amplitude C) Both a. and b. D) None of the above

Last Answer : C) Both a. and b.

Description : In damped free vibrations, which parameters indicate vibrations? a. Natural frequency b. Rate of decay of amplitude c. Both a. and b. d. None of the above

Last Answer : c. Both a. and b.

Description : The instruments which are used to measure the ___________ of a vibrating body are called vibration measuring instrument. (A) displacement (B) velocity (C) acceleration (D) all of the above

Last Answer : (D) all of the above

Description : If the spring mass system with m and spring stiffness k is taken to very high altitude, the natural frequency of longitudinal vibrations * 1 point (A) increases (B) decreases (C) remain unchanged (D) may increase or decrease depending upon the value of the mass

Last Answer : (C) remain unchanged

Description : The critical speed of a shaft with a disc supported in between is equal to the natural frequency of the system in A Transverse vibrations B Torsional vibrations C Longitudinal vibrations D None of the mentioned

Last Answer : A Transverse vibrations

Description : If the spring mass system with m and spring stiffness k is taken to very high altitude , the natural frequency of longitudinal vibrations A) Increases B) Decreases C) Remain unchanged D) May be increase or decrease depending upon the value of the mass

Last Answer : C) Remain unchanged

Description : The critical speed of a shaft with a disc supported in between is equal to the natural frequency of the system in a) transverse vibrations b) torsional vibrations c) longitudinal vibrations d) none of the mentioned

Last Answer : a) transverse vibrations

Description : The natural frequency (in Hz) of free longitudinal vibrations is equal to a) Square root (k/m) / (2π) b) Square root (g/δ) / (2π) c) 0.4985/δ d) all of the mentioned

Last Answer : d) all of the mentioned

Description : Calculate the natural frequency of transverse vibrations if the static deflection is 0.01mm. a) 157.6 b) 144.8 c) 173.2 d) 154.1

Last Answer : a) 157.6

Description : f the mass is of 10 Kg, find the natural frequency in Hz of the free longitudinal vibrations. The displacement is 0.01mm. a) 44.14 b) 49.85 c) 43.43 d) 46.34

Last Answer : b) 49.85

Description : Find the displacement in mm of the free longitudinal vibrations if the Natural frequency is 20 Hz. a) 0.1 b) 0.2 c) 0.5 d) 0.6

Last Answer : d) 0.6

Description : Find the displacement in mm of the free longitudinal vibrations if the Natural frequency is 15 Hz. a) 1.1 b) 1.2 c) 1.5 d) 1.6

Last Answer : a) 1.1

Description : Find the natural frequency in Hz of the free longitudinal vibrations if the displacement is 2mm. a) 11.14 b) 12.38 c) 11.43 d) 11.34

Last Answer : a) 11.14

Description : The critical speed of a shaft with a disc supported in between is equal to the natural frequency of the system in a) transverse vibrations b) torsional vibrations c) longitudinal vibrations d) none of the mentioned

Last Answer : a) transverse vibrations

Description : The natural frequency (in Hz) of free longitudinal vibrations is equal to a) 1/2π√s/m b) 1/2π√g/δ c) 0.4985/δ d) all of the mentioned

Last Answer : d) all of the mentioned

Description : What is meant by critical damping coefficient? * 1 point (A) Frequency of damped free vibrations is less than zero (B). The motion is a periodic in nature (C). Both a. and b. (D). None of the above

Last Answer : (C). Both a. and b.

Description : What is meant by critical damping coefficient? A Frequency of damped free vibrations is less than zero B The motion is aperiodic in nature C Both a. and b. D None of the above

Last Answer : B The motion is aperiodic in nature

Description : What is meant by critical damping coefficient? B ( A )Frequency of damped free vibrations is less than zero ( B )The motion is aperiodic in nature ( C )Both a. and b. (D)None of the above

Last Answer : ( B )The motion is aperiodic in nature

Description : What is meant by critical damping coefficient? a. Frequency of damped free vibrations is less than zero b. The motion is aperiodic in nature c. Both a. and b. d. None of the above

Last Answer : b. The motion is aperiodic in nature

Description : _______ torsional vibrations will occur in a two-rotor system only if both rotors have the same frequency. (A) Free (B) Forced (C) Unbalanced (D) None of the above

Last Answer : (A) Free

Description : Free torsional vibrations will occur in a two rotor system only if both rotors have same frequency. a) True b) False

Last Answer : a) True

Description : From the following, which one is a type of vibration measuring instrument? A Mechanical B Electrical C Magnetic D All of the above

Last Answer : D All of the above

Description : From the following, which one is a type of vibration measuring instrument?(A) Mechanical (B) Electrical (C) Magnetic (D) All of the above

Last Answer : (D) All of the above

Description : Frequency of vibrations is usually expressed in A number of cycles per hour B number of cycles per minute C number of cycles per secondD None of these

Last Answer : C number of cycles per second

Description : Which of the following statements is/are true? A. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction B. Shaft vibrates with maximum frequency when rotors ... C. Zero node behavior is observed in rotors rotating in opposite direction D. All of the above

Last Answer : A. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction

Description : In coulomb damping the frequency of damped vibrations is A Equal to that of undamped vibrations B Less than that of undamped vibrationsC More than that of undamped vibrations D Independent of the frequency of undamped vibration

Last Answer : A Equal to that of undamped vibrations

Description : Calculate the static deflection in μm of transverse vibrations if the frequency is 200Hz. A. 6.21 B. 0.621 C. 62.1 D. 0.006

Last Answer : A. 6.21

Description : Which of the following statements is/are true? A) Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction B) Shaft vibrates with maximum frequency when rotors ... C) Zero node behavior is observed in rotors rotating in opposite direction D) All of the above

Last Answer : A) Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction

Description : In case of viscous damping the frequency of damped vibration is A) Equal to that of undamped vibrations B) Less than that of undamped vibrations C) Greater than that of undamped vibrations D) Independent than that of undamped vibrations

Last Answer : B) Less than that of undamped vibrations

Description : Frequency of vibrations is usually expressed in ( A ) number of cycles per hour ( C ) number of cycles per second C ( B ) number of cycles per minute ( D ) None of these

Last Answer : ( C ) number of cycles per second

Description : Which of the following statements is/are true? a. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction b. Shaft vibrates with maximum frequency when rotors ... c. Zero node behavior is observed in rotors rotating in opposite direction d. All of the above

Last Answer : a. Torsional vibrations do not occur in a three rotor system, if rotors rotate in same direction

Description : If the mass increases, then the frequency of the free vibrations increases. a) True b) False

Last Answer : b) False

Description : A body of mass 20 kg is suspended from a spring which deflects 20mm under this load. Calculate the frequency of free vibrations in Hz. a) 3.5 b) 5 c) 6 d) 7

Last Answer : a) 3.5

Description : Calculate the static deflection in μm of transverse vibrations if the frequency is 200Hz. a) 6 b) 0.6 c) 60 d) 0.006

Last Answer : a) 6

Description : For the same dimensions of a beam, transverse vibrations have a lower frequency than longitudinal frequency.a) True b) False

Last Answer : a) True

Description : A cantilever shaft having 50 mm diameter and a length of 300 mm has a disc of mass 100 kg at its free end. The Young’s modulus for the shaft material is 200 GN/m 2 . Determine the frequency of transverse vibrations of the shaft. a) 31 b) 35 c) 37 d) 41

Last Answer : d) 41

Description : When the body vibrates under the influence of external force, then the body is said to be under ___________ . * 1 point (A) free vibrations (B) natural vibrations (C) forced vibrations (D) damped vibrations

Last Answer : (C) forced vibrations

Description : The vibrations can be controlled by A. Controlling the natural frequencies B. Using proper damping devices C. Introducing vibration absorbers and vibration isolators D. All the above

Last Answer : D. All the above

Description : When the external force is acting on the vibrating body, the vibrations are said to be A. Natural Vibrations B. Forced Vibrations C. Loaded Vibrations D. Undamped Vibrations

Last Answer : B. Forced Vibrations

Description : Vibration measuring instruments are classified on the basis of ____________. (A) contact between the vibrating system and measuring instrument (B) the requirement of power source (C) method of measurements (D) all of the above

Last Answer : (D) all of the above

Description : The accelerometer is used as a transducer to measure earthquake in Richter scale. Its design is based on the principle that A Its natural frequency is very low in comparison to the frequency ... is equal to the frequency of vibration D Measurement of vibratory motion is without any reference point

Last Answer : C Its natural frequency is equal to the frequency of vibration

Description : The accelerometer is used as a transducer to measure earthquake in Richter scale. Its design is based on the principle that a) its natural frequency is very low in comparison to the frequency ... is equal to the frequency of vibration d) measurement of vibratory motion is without any reference point

Last Answer : c) its natural frequency is equal to the frequency of vibration

Description : The accelerometer is used as a transducer to measure earthquake in Richter scale. Its design is based on the principle that ______. (A) its natural frequency is very low in comparison to the ... is equal to the frequency of vibration (D) measurement of vibratory motion is without any reference poin

Last Answer : (C) its natural frequency is equal to the frequency of vibration

Description : The accelerometer is used as a transducer to measure earthquake in Richter scale. Its design is based on the principle that a) its natural frequency is very low in comparison to the frequency ... is equal to the frequency of vibration d) measurement of vibratory motion is without any reference poin

Last Answer : c) its natural frequency is equal to the frequency of vibration

Description : In which type of vibrations, amplitude of vibration goes on decreasing every cycle? A) Damped vibrations B) Undamped vibrations C) Both a. and b. D) None of the above

Last Answer : A) Damped vibrations

Description : In which type of vibrations, amplitude of vibration goes on decreasing every cycle? a. Damped vibrations b. Undamped vibrations c. Both a. and b. d. None of the above

Last Answer : a. Damped vibrations

Description : An instrument used to measure soil compaction is: a Hydrometer b Cone penetrometer c Tachometer d Hygrometer

Last Answer : b Cone penetrometer

Description : In measuring critical speed of shaft experiment, it was found that the frequency ratio is 0.707 when the eccentricity is 0.05 m. what will be the displacement of the system. A. 0.05 m B. 0.005 m C. 0.5 m D. Infinite

Last Answer : A. 0.05 m

Description : The vibrations of the body with no resistance to its motion known as A. Damped Vibrations B. Undamped Vibrations C. Both D. None

Last Answer : B. Undamped Vibrations