If two chords intersect inside a circle the angles formed are called inscribed angles.?

1 Answer

Answer :

yes

Related questions

Description : If two chords AB and CD of a circle AYDZBWCX intersect at right angles, then prove that arc CXA + arc DZB = arc AYD + arc BWC = semi-circle. -Maths 9th

Last Answer : Given In a circle AYDZBWCX, two chords AB and CD intersect at right angles. To prove arc CXA + arc DZB = arc AYD + arc BWC = Semi-circle. Construction Draw a diameter EF parallel to CD having centre M. Proof ... (i) arc ECXA = arc EWB [symmetrical about diameter of a circle] arc AF = arc BF (ii)

Description : If two chords AB and CD of a circle AYDZBWCX intersect at right angles, then prove that arc CXA + arc DZB = arc AYD + arc BWC = semi-circle. -Maths 9th

Last Answer : Given In a circle AYDZBWCX, two chords AB and CD intersect at right angles. To prove arc CXA + arc DZB = arc AYD + arc BWC = Semi-circle. Construction Draw a diameter EF parallel to CD having centre M. Proof ... (i) arc ECXA = arc EWB [symmetrical about diameter of a circle] arc AF = arc BF (ii)

Description : In the given figure, if chords AB and CD of the circle intersect each other at right angles, then find x + y. -Maths 9th

Last Answer : ∴ ∠CAO = ∠ODB = x [angles in same segment ] ---- (i) Now, in right angled ΔDOB , ∠ODB + ∠DOB + ∠OBD = 180° ⇒ x + 90° + y =180° (using equation i) ⇒ x + y = 90°

Description : In the given figure, if chords AB and CD of the circle intersect each other at right angles, then find x + y. -Maths 9th

Last Answer : ∴ ∠CAO = ∠ODB = x [angles in same segment ] ---- (i) Now, in right angled ΔDOB , ∠ODB + ∠DOB + ∠OBD = 180° ⇒ x + 90° + y =180° (using equation i) ⇒ x + y = 90°

Description : A trapezium ABCD in which AB || CD is inscribed in a circle with centre O. Suppose the diagonals AC and BD of the trapezium intersect at M -Maths 9th

Last Answer : answer:

Description : If two equal chords of a circle intersect, prove that the parts of one chord are separately equal to the parts of the other chord. -Maths 9th

Last Answer : Explanation of this question

Description : Two equal chords AB and CD of a circle when produced intersect at a point P. Prove that PB = PD. -Maths 9th

Last Answer : According to question prove that PB = PD.

Description : If two equal chords of a circle intersect, prove that the parts of one chord are separately equal to the parts of the other chord. -Maths 9th

Last Answer : Explanation of this question

Description : Two equal chords AB and CD of a circle when produced intersect at a point P. Prove that PB = PD. -Maths 9th

Last Answer : According to question prove that PB = PD.

Last Answer : I determined and what next? A circle inscribed in a triangle This is a circle that touches all sides of the triangle. The center of the circle inscribed in the triangle ABC is the intersection of the axes of the ... the 2nd series of the summer part of KMS 2009 / 2010.pdf example no.6" in Slovak

Description : If two intersecting chords of a circle make equal angles ...... -Maths 9th

Last Answer : Given: AB and CD are two chords of a circle with centre O, intersecting at point E. PQ is a diameter through E, such that ∠AEQ = ∠DEQ. To prove: AB = CD Construction: Draw OL perpendicular AB and ... the circle. Since, chords of a circle which are equidistant from the centre are equal. ∴ AB = CD

Description : In the given figure, equal chords AB and CD of a circle with centre O cut at right angles at E. If M and N are the mid-points of AB and CD respectively, prove that OMEN is a square. -Maths 9th

Last Answer : Join OE. In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre] ∠OME = ∠ONE = 90° OE =OE [common sides] ∠OME ≅ ∠ONE [by SAS congruency] ⇒ ME = NE [by CPCT] In quadrilateral OMEN, ... =ON , ME = NE and ∠OME = ∠ONE = ∠MEN = ∠MON = 90° Hence, OMEN is a square. Hence proved.

Description : Equal chords of a circle subtend equal angles at the centre. -Maths 9th

Last Answer : Given : In a circle C(O,r), chord AB = chord CD. To Prove : ∠AOB = ∠COD. Proof : In△AOB and △COD AO = CO [radii of same circle] BO = DO [radii of same circle] Chord AB = Chord CD [given] ⇒ △AOB ≅ △COD [by SSS congruence axiom] ⇒ ∠AOB = ∠COD. [c.p.c.t.]

Description : If the angles subtended by the chords of a circle at the centre are equal, then chords are equal. -Maths 9th

Last Answer : Given : In a circle C(O,r) , ∠AOB = ∠COD To Prove : Chord AB = Chord CD . Proof : In △AOB and △COD AO = CO [radii of same circle] BO = DO [radii of same circle] ∠AOB = ∠COD [given] ⇒ △AOB ≅ △COD [by SAS congruence axiom] ⇒ Chord AB = Chord CD [c.p.c.t]

Description : In the given figure, equal chords AB and CD of a circle with centre O cut at right angles at E. If M and N are the mid-points of AB and CD respectively, prove that OMEN is a square. -Maths 9th

Last Answer : Join OE. In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre] ∠OME = ∠ONE = 90° OE =OE [common sides] ∠OME ≅ ∠ONE [by SAS congruency] ⇒ ME = NE [by CPCT] In quadrilateral OMEN, ... =ON , ME = NE and ∠OME = ∠ONE = ∠MEN = ∠MON = 90° Hence, OMEN is a square. Hence proved.

Description : Equal chords of a circle subtend equal angles at the centre. -Maths 9th

Last Answer : Given : In a circle C(O,r), chord AB = chord CD. To Prove : ∠AOB = ∠COD. Proof : In△AOB and △COD AO = CO [radii of same circle] BO = DO [radii of same circle] Chord AB = Chord CD [given] ⇒ △AOB ≅ △COD [by SSS congruence axiom] ⇒ ∠AOB = ∠COD. [c.p.c.t.]

Description : If the angles subtended by the chords of a circle at the centre are equal, then chords are equal. -Maths 9th

Last Answer : Given : In a circle C(O,r) , ∠AOB = ∠COD To Prove : Chord AB = Chord CD . Proof : In △AOB and △COD AO = CO [radii of same circle] BO = DO [radii of same circle] ∠AOB = ∠COD [given] ⇒ △AOB ≅ △COD [by SAS congruence axiom] ⇒ Chord AB = Chord CD [c.p.c.t]

Description : If bisectors of opposite angles of a cyclic quadrilateral ABCD intersect the circle, circumscribing it at the points P and Q, prove that PQ is a diameter of the circle. -Maths 9th

Last Answer : Given, ABCD is a cyclic quadrilateral. DP and QB are the bisectors of ∠D and ∠B, respectively. To prove PQ is the diameter of a circle. Construction Join QD and QC.

Description : If bisectors of opposite angles of a cyclic quadrilateral ABCD intersect the circle, circumscribing it at the points P and Q, prove that PQ is a diameter of the circle. -Maths 9th

Last Answer : Given, ABCD is a cyclic quadrilateral. DP and QB are the bisectors of ∠D and ∠B, respectively. To prove PQ is the diameter of a circle. Construction Join QD and QC.

Description : What is the radius of a circle inscribed in a triangle having side lengths 35 cm, 44 cm and 75 cm? -Maths 9th

Last Answer : (d) 6 cmLet a = 35 cm, b = 44 cm, c = 75 cm. Thens = \(rac{a+b+c}{2}\) = \(rac{34+44+75}{2}\) cm = 77 cm∴ Area if triangle = \(\sqrt{77(77-35)(77-44)(77-75)}\) cm2= \(\sqrt{77 imes42 ... ) cm2 = 462 cm2∴ Radius of incircle = \(rac{ ext{Area}}{ ext{semi-perimeter}}\) = \(rac{462}{77}\) cm = 6 cm.

Description : If the area of a circle, inscribed in an equilateral triangle is 4π cm^2, then what is the area of the triangle? -Maths 9th

Last Answer : (a) 12√3 cm2Since area of circle = 4π ⇒ πr2 = 4π ⇒ r = 2 cmIn ΔOAD,tan 30° = \(rac{OD}{AD}\) ⇒ \(rac{1}{\sqrt3}\) = \(rac{2}{AD}\)⇒ AD = 2√3 cm ∴ AB = 2AD = 4√3 cm∴ Area of equilateral ΔABC = \(rac{\sqrt3}{4}\) (AB)2= \(rac{\sqrt3}{4}\) (4√3)2 = 12√3 cm2.

Description : A circle is inscribed in an equilateral triangle of side a. What is the area of any square inscribed in this circle? -Maths 9th

Last Answer : (c) \(rac{a^2}{6}.\)If a' is length of the side of ΔABC, thenArea of ΔABC = \(rac{\sqrt3}{4}\,a^2\)semi-perimeter of ΔABC = \(rac{3a}{2}\)∴ Radius of in-circle = \(rac{ ext{Area}}{ ext{semi-perimeter}}\) = \( ... {( ext{diagonal})^2}{2}\) = \(rac{\big(rac{a}{\sqrt3}\big)^2}{2}\) = \(rac{a^2}{6}.\)

Description : Find the area of an equilateral triangle inscribed in a circle circumscribed by a square made by joining the mid-points -Maths 9th

Last Answer : (d) \(rac{3\sqrt3a^2}{32}\)Let AB = a be the side of the outermost square.Then AG = AH = \(rac{a}{2}\)⇒ GH = \(\sqrt{rac{a^2}{4}+rac{a^2}{4}}\) = \(rac{a}{\sqrt2}\)∴ Diameter of circle = \(rac{a} ... rac{\sqrt3}{2}\) = \(rac{\sqrt3a^2}{32}\)∴ Area of ΔPQR = 3 (Area of ΔPOQ) = \(rac{\sqrt3a^2}{32}\)

Description : What is the angle of the circle or the angle inscribed in the circle ?

Last Answer : If the vertex of an angle is a point in a circle and there is a point in a circle in addition to the vertex on each side of a circle, then the angle is called a circle angle or an angle inscribed in the circle.

Description : A circle is inscribed in a polygon. As the number of sides increases, the difference in areas of circle and polygon _________.

Last Answer : A circle is inscribed in a polygon. As the number of sides increases, the difference in areas of circle and polygon _________.

Description : An isosceles triangle of vertical angle `2theta` is inscribed in a circle of radius `a` . Show that the area of the triangle is maximum when `theta=pi

Last Answer : An isosceles triangle of vertical angle `2theta` is inscribed in a circle of radius `a` . Show that the area of ... pi/4` C. `pi/6` D. None of these.

Description : In the following figure a wire bent in the form of a regular polygon of `n` sides is inscribed in a circle of radius `a`. Net magnetic field at centre

Last Answer : In the following figure a wire bent in the form of a regular polygon of `n` sides is inscribed in a circle of ... (ni)/(a)mu_(0)tan.(pi)/(n)` D.

Description : In the construction of the incenter why is step 5 necessary for drawing the inscribed circle?

Last Answer : What is the answer ?

Description : Is the shortest distance from the center of the inscribed circle to the triangle sides is the circles?

Last Answer : It is its inradius.

Description : The area of the circle that can be inscribed in a square of side 6 cm is (a) 36 π cm 2 (b) 18 π cm 2 (c) 12 π cm 2 (d) 9 π cm 2

Last Answer : (d) 9 π cm 2

Description : 1. Recall that two circles are congruent if they have the same radii. Prove that equal chords of congruent circles subtend equal angles at their centres. -Maths 9th

Last Answer : To recall, a circle is a collection of points whose every point is equidistant from its centre. So, two circles can be congruent only when the distance of every point of both the circles are equal from the centre ... ) So, by SSS congruency, ΔAOB ΔCOD ∴ By CPCT we have, AOB = COD. (Hence proved).

Description : 2. Prove that if chords of congruent circles subtend equal angles at their centres, then the chords are equal. -Maths 9th

Last Answer : Consider the following diagram- Here, it is given that AOB = COD i.e. they are equal angles. Now, we will have to prove that the line segments AB and CD are equal i.e. AB = CD. Proof: In triangles AOB ... ) So, by SAS congruency, ΔAOB ΔCOD. ∴ By the rule of CPCT, we have AB = CD. (Hence proved).

Description : In a parallelogram, show that the angle bisectors of two adjacent angles intersect at right angles. -Maths 9th

Last Answer : Given : A parallelogram ABCD such that the bisectors of adjacent angles A and B intersect at P. To prove : ∠APB = 90° Proof : Since ABCD is a | | gm ∴ AD | | BC ⇒ ∠A + ∠B = 180° [sum of consecutive interior ... 90° + ∠APB + ∠2 = 180° [ ∵ ∠1 + ∠2 = 90° from (i)] Hence, ∠APB = 90°

Description : If two lines intersect prove that the vertically opposite angles are equal. -Maths 9th

Last Answer : Given Two lines AB and CD intersect at point O.

Description : In a parallelogram, show that the angle bisectors of two adjacent angles intersect at right angles. -Maths 9th

Last Answer : Given : A parallelogram ABCD such that the bisectors of adjacent angles A and B intersect at P. To prove : ∠APB = 90° Proof : Since ABCD is a | | gm ∴ AD | | BC ⇒ ∠A + ∠B = 180° [sum of consecutive interior ... 90° + ∠APB + ∠2 = 180° [ ∵ ∠1 + ∠2 = 90° from (i)] Hence, ∠APB = 90°

Description : If two lines intersect prove that the vertically opposite angles are equal. -Maths 9th

Last Answer : Given Two lines AB and CD intersect at point O.

Description : Prove that, the bisector of any two consecutive angles of parallelogram intersect at right angle. -Maths 9th

Last Answer : Construct a Parallelogram ABCD where AB is Parallel to CD and BC is Parallel to AD. Make Angle Bisectors of Angle A and Angle B and let them join at O and let Angle OAB be X and ... Proved that the bisector of any two consecutive angles of parallelogram intersect at right angle I HOPE IT HELPS

Description : is this statement true or falseIf two lines are perpendicular, then they intersect to form 4 acute angles.?

Last Answer : Answers is the place to go to get the answers you need and to ask the questions you want

Description : Bisectors of the angles B and C of an isosceles triangle with AB = AC intersect each other at O. -Maths 9th

Last Answer : Solution of this question

Description : Bisectors of the angles B and C of an isosceles triangle with AB = AC intersect each other at O. -Maths 9th

Last Answer : Solution of this question

Last Answer : The rhombuses intersect at right angles to each other.

Description : Angles to a given pivot station observed from a number of traverse stations when plotted, the lines to the pivot station intersect at a common point (A) Angular measurements are correct and ... plotting of traverse (D) Angular and linear measurements and also plotting of the traverse are correct

Last Answer : (D) Angular and linear measurements and also plotting of the traverse are correct

Description : Prove that the line joining the mid-points of two parallel chords of a circle passes through the centre. -Maths 9th

Last Answer : Let AB and CD be two parallel chords having P and Q as their mid-points, respectively. Let O be the centre of the circle. Join OP and OQ and draw OX | | AB | | CD. Since, Pis the mid-point of AB. ⇒ OP ... 90° Now, ∠POX + ∠XOQ = 90° + 90° = 180° so, POQ is a straight line . Hence proved

Description : If two chords of a circle with a common end-point are inclined equally to the diameter through this common end-point, then prove that chords are equal. -Maths 9th

Last Answer : Let AB and AC be two chords and AD be the diameter of the circle . Draw OL ⊥ AB and OM ⊥ AC . In ΔOLA and ΔOMA ∠ OLA = ∠ OMA = 90° OA = OA [common sides] ∠ OAL = ∠ OAM [given] . OLA ≅ OMA [by ASA congruency] OL =OM (by CPCT) Chords AM and AC are equidistant from O. ∴ AB = AC Hence proved.

Description : If a line segment joining mid-points of two chords of a circle passes through the centre of the circle, prove that the two chords are parallel. -Maths 9th

Last Answer : According to question prove that the two chords are parallel.

Description : AB and AC are two equal chords of a circle. -Maths 9th

Last Answer : Given AS and AC are two equal chords whose centre is O. To prove Centre O lies on the bisector of ∠BAC. Construction Join SC, draw bisector AD of ∠BAC. Proof In ΔSAM and ΔCAM, AS = AC [given] ∠BAM = ∠CAM [given]

Description : If a line segment joining mid-points of two chords of a circle passes through the centre of the circle, prove that the two chords are parallel. -Maths 9th

Last Answer : Given : E and F are mid points of 2 chords AB and CD respectively. Line EF passes through centre. To prove : AB||CD ∠ OFC = ∠ OEA = 90° as line drawn through the centre to bisect the ... EF as traversal for lines AB and CD as alternate interior angles on same side are equal. Therefore, AB || CD

Description : In figure, AB and CD are two chords of a circle intersecting each other at point E. -Maths 9th

Last Answer : Given In a figure, two chords AB and CD intersecting each other at point E.

Description : AB and AC are two chords of a circle of radius r such that AB = 2AC. -Maths 9th

Last Answer : According to question 4q 2 = p 2+ 3r 2.

Description : Prove that the line joining the mid-points of two parallel chords of a circle passes through the centre. -Maths 9th

Last Answer : Let AB and CD be two parallel chords having P and Q as their mid-points, respectively. Let O be the centre of the circle. Join OP and OQ and draw OX | | AB | | CD. Since, Pis the mid-point of AB. ⇒ OP ... 90° Now, ∠POX + ∠XOQ = 90° + 90° = 180° so, POQ is a straight line . Hence proved