Prove that, the bisector of any two consecutive angles of parallelogram intersect at right angle. -Maths 9th

1 Answer

Answer :

Construct a Parallelogram ABCD where AB is Parallel to CD and BC is Parallel to AD. Make Angle Bisectors of Angle A and Angle B and let them join at O and let Angle OAB be X and Angle OBA be Y.... Angle A+ Angle B =180°(£q.1) (Since sum of adjacent angles of a Parallelogram is 180°). . . . Now multiply £q 1 by 1/2 1/2AngleA+1/2AngleB=90° ANGLE OAB+ ANGLE OBA=90° X+Y=90°...(£q.2) X+Y+Angle AOB =180°...(£q.3)(angle sum property of a triangle) Since X+Y=90°(£q.2) Angle AOB=180°-90° = 90° Hence Proved that  the bisector of any two consecutive angles of parallelogram intersect at right angle I HOPE IT HELPS

Related questions

Description : Prove that the bisector of the angles of a parallelogram enclose a rectangle. -Maths 9th

Last Answer : Solution :-

Description : Prove that angle bisector of any angle of a triangle and perpendicular bisector of the opposite side, if intersect they will intersect on the circumcircle of the triangle. -Maths 9th

Last Answer : According to question prove that angle bisector of any angle of a triangle and perpendicular bisector of the opposite side,

Description : Prove that angle bisector of any angle of a triangle and perpendicular bisector of the opposite side, if intersect they will intersect on the circumcircle of the triangle. -Maths 9th

Last Answer : According to question prove that angle bisector of any angle of a triangle and perpendicular bisector of the opposite side,

Description : In a parallelogram, show that the angle bisectors of two adjacent angles intersect at right angles. -Maths 9th

Last Answer : Given : A parallelogram ABCD such that the bisectors of adjacent angles A and B intersect at P. To prove : ∠APB = 90° Proof : Since ABCD is a | | gm ∴ AD | | BC ⇒ ∠A + ∠B = 180° [sum of consecutive interior ... 90° + ∠APB + ∠2 = 180° [ ∵ ∠1 + ∠2 = 90° from (i)] Hence, ∠APB = 90°

Description : In a parallelogram, show that the angle bisectors of two adjacent angles intersect at right angles. -Maths 9th

Last Answer : Given : A parallelogram ABCD such that the bisectors of adjacent angles A and B intersect at P. To prove : ∠APB = 90° Proof : Since ABCD is a | | gm ∴ AD | | BC ⇒ ∠A + ∠B = 180° [sum of consecutive interior ... 90° + ∠APB + ∠2 = 180° [ ∵ ∠1 + ∠2 = 90° from (i)] Hence, ∠APB = 90°

Description : If two circles intersect at two points, prove that their centres lie on the perpendicular bisector of the common chord. -Maths 9th

Last Answer : Given: Two circles, with centres O and O' intersect at two points A and B. A AB is the common chord of the two circles and OO' is the line segment joining the centres of the two circles. Let OO' intersect ... 0° Thus, AP = BP and ∠APO = ∠BPO = 9 0° Hence, OO' is the perpendicular bisector of AB.

Description : ABC is an isosceles triangle in which AB=AC.AD bisects exterior angles PAC and CD parallel AB.Prove that-i)angle DAC=angle BAC ii)∆BCD is a parallelogram -Maths 9th

Last Answer : AB =AC(given) Angle ABC =angle ACB (angle opposite to equal sides) Angle PAC=Angle ABC +angle ACB (Exterior angle property) Angle PAC =2 angle ACB - - - - - - (1) AD BISECTS ANGLE PAC. ANGLE ... AND AC IS TRANSVERSAL BC||AD BA||CD (GIVEN ) THEREFORE ABCD IS A PARALLEGRAM. HENCE PROVED........

Description : ABC is an isosceles triangle in which AB=AC.AD bisects exterior angles PAC and CD parallel AB.Prove that-i)angle DAC=angle BAC ii)∆BCD is a parallelogram -Maths 9th

Last Answer : AB =AC(given) Angle ABC =angle ACB (angle opposite to equal sides) Angle PAC=Angle ABC +angle ACB (Exterior angle property) Angle PAC =2 angle ACB - - - - - - (1) AD BISECTS ANGLE PAC. ANGLE ... AND AC IS TRANSVERSAL BC||AD BA||CD (GIVEN ) THEREFORE ABCD IS A PARALLEGRAM. HENCE PROVED........

Description : If two chords AB and CD of a circle AYDZBWCX intersect at right angles, then prove that arc CXA + arc DZB = arc AYD + arc BWC = semi-circle. -Maths 9th

Last Answer : Given In a circle AYDZBWCX, two chords AB and CD intersect at right angles. To prove arc CXA + arc DZB = arc AYD + arc BWC = Semi-circle. Construction Draw a diameter EF parallel to CD having centre M. Proof ... (i) arc ECXA = arc EWB [symmetrical about diameter of a circle] arc AF = arc BF (ii)

Description : If two chords AB and CD of a circle AYDZBWCX intersect at right angles, then prove that arc CXA + arc DZB = arc AYD + arc BWC = semi-circle. -Maths 9th

Last Answer : Given In a circle AYDZBWCX, two chords AB and CD intersect at right angles. To prove arc CXA + arc DZB = arc AYD + arc BWC = Semi-circle. Construction Draw a diameter EF parallel to CD having centre M. Proof ... (i) arc ECXA = arc EWB [symmetrical about diameter of a circle] arc AF = arc BF (ii)

Description : EF is the transversal to two parallel lines AB and CD. GM and HL are the bisector of the corresponding angles EGB and EHD.Prove that GL parallel to HL. -Maths 9th

Last Answer : AB || CD and a transversal EF intersects them ∴ ∠EGB = ∠GHD ( Corresponding Angles) ⇒ 2 ∠EGM = 2 ∠GHL ∵ GM and HL are the bisectors of ∠EGB and ∠EHD respectively. ⇒ ∠EGM = ∠GHL But these angles form a pair of equal corresponding angles for lines GM and HL and transversal EF. ∴ GM || HL.

Description : EF is the transversal to two parallel lines AB and CD. GM and HL are the bisector of the corresponding angles EGB and EHD.Prove that GL parallel to HL. -Maths 9th

Last Answer : AB || CD and a transversal EF intersects them ∴ ∠EGB = ∠GHD ( Corresponding Angles) ⇒ 2 ∠EGM = 2 ∠GHL ∵ GM and HL are the bisectors of ∠EGB and ∠EHD respectively. ⇒ ∠EGM = ∠GHL But these angles form a pair of equal corresponding angles for lines GM and HL and transversal EF. ∴ GM || HL.

Description : ABCD is a parallelogram whose diagonals intersect at O. If P is any point on BO, prove that : -Maths 9th

Last Answer : (i) Since diagonals of a parallelogram bisect each other. ∴ O is the mid - point AC as well as BD. In △ADC, OD is a median. ∴ ar(△ADO) = ar(△CDO) [∵ A median of a triangle divide it into two triangles of equal ... and (i) , we have ar(△AOB) - ar(△AOP) = ar(△BOC) - ar(△COP) ⇒ ar(△ABP) = (△CBP)

Description : ABCD is a parallelogram whose diagonals intersect at O. If P is any point on BO, prove that : -Maths 9th

Last Answer : (i) Since diagonals of a parallelogram bisect each other. ∴ O is the mid - point AC as well as BD. In △ADC, OD is a median. ∴ ar(△ADO) = ar(△CDO) [∵ A median of a triangle divide it into two triangles of equal ... and (i) , we have ar(△AOB) - ar(△AOP) = ar(△BOC) - ar(△COP) ⇒ ar(△ABP) = (△CBP)

Description : ABCD is a parallelogram.The circle through A,B and C intersect CD (produce if necessary) at E.Prove that AE = AD. -Maths 9th

Last Answer : Solution :- ∠ABC + ∠AEC = 1800 (Opposite angles of cyclic quadrilateral) .. . (i) ∠ADE + ∠ADC = 1800 (Linear pair) But ∠ADC = ∠ABC (Opposite angles of ||gm) ∴ ∠ADE + ∠ABC = 1800 .. (ii) ... ∠ABC + ∠AEC = ∠ADE + ∠ABC ⇒ ∠AEC = ∠ADE ⇒ AD = AE (sides opposite to equal angles)

Description : If two lines intersect prove that the vertically opposite angles are equal. -Maths 9th

Last Answer : Given Two lines AB and CD intersect at point O.

Description : If two lines intersect prove that the vertically opposite angles are equal. -Maths 9th

Last Answer : Given Two lines AB and CD intersect at point O.

Description : If bisectors of opposite angles of a cyclic quadrilateral ABCD intersect the circle, circumscribing it at the points P and Q, prove that PQ is a diameter of the circle. -Maths 9th

Last Answer : Given, ABCD is a cyclic quadrilateral. DP and QB are the bisectors of ∠D and ∠B, respectively. To prove PQ is the diameter of a circle. Construction Join QD and QC.

Description : If bisectors of opposite angles of a cyclic quadrilateral ABCD intersect the circle, circumscribing it at the points P and Q, prove that PQ is a diameter of the circle. -Maths 9th

Last Answer : Given, ABCD is a cyclic quadrilateral. DP and QB are the bisectors of ∠D and ∠B, respectively. To prove PQ is the diameter of a circle. Construction Join QD and QC.

Description : If the bisector of an angle of a triangle bisects the opposite side, prove that the triangle is isosceles. -Maths 9th

Last Answer : Solution :-

Description : Diagonals AC and BC of parallelogram ABCD Intersect at point O. Angle BOC=90° and BDC=50°.find angle OAB. -Maths 9th

Last Answer : NEED ANSWER

Description : Diagonals AC and BC of parallelogram ABCD Intersect at point O. Angle BOC=90° and BDC=50°.find angle OAB. -Maths 9th

Last Answer : Its given ABCD is a IIgram and AC and BD are its diagonals intersecting at point O. . Given : angle BOC = 900 angle BDC = 500 To find : angle OAB Answer : i) ...

Description : Prove that the quadrilateral formed by the bisectors of the angles of a parallelogram is a rectangle. -Maths 9th

Last Answer : Given Let ABCD be a parallelogram and AP, BR, CR, be are the bisectors of ∠A, ∠B, ∠C and ∠D, respectively. To prove Quadrilateral PQRS is a rectangle. Proof Since, ABCD is a parallelogram, then DC ... and ∠PSR = 90° Thus, PQRS is a quadrilateral whose each angle is 90°. Hence, PQRS is a rectangle.

Description : Prove that the quadrilateral formed by the bisectors of the angles of a parallelogram is a rectangle. -Maths 9th

Last Answer : Given Let ABCD be a parallelogram and AP, BR, CR, be are the bisectors of ∠A, ∠B, ∠C and ∠D, respectively. To prove Quadrilateral PQRS is a rectangle. Proof Since, ABCD is a parallelogram, then DC ... and ∠PSR = 90° Thus, PQRS is a quadrilateral whose each angle is 90°. Hence, PQRS is a rectangle.

Description : Prove that the angle bisectors of a parallelogram form a rectangle. -Maths 9th

Last Answer : answer:

Description : If one of a parallelogram is twice of its adjacent angle , find the angles of the parallelogram . -Maths 9th

Last Answer : Let the two adjacent angles be x° and 2x° . In a parallelogram, sum of the adjacent angles are 180°. ∴ x + 2x = 180° ⇒ 3x = 180° ⇒ x = 60° Thus , the two adjacent angles are 120° and 60°. Hence, the angles of the parallelogram are 120°, 60°, 120° and 60°.

Description : If one of a parallelogram is twice of its adjacent angle , find the angles of the parallelogram . -Maths 9th

Last Answer : Let the two adjacent angles be x° and 2x° . In a parallelogram, sum of the adjacent angles are 180°. ∴ x + 2x = 180° ⇒ 3x = 180° ⇒ x = 60° Thus , the two adjacent angles are 120° and 60°. Hence, the angles of the parallelogram are 120°, 60°, 120° and 60°.

Description : In the given figure, if chords AB and CD of the circle intersect each other at right angles, then find x + y. -Maths 9th

Last Answer : ∴ ∠CAO = ∠ODB = x [angles in same segment ] ---- (i) Now, in right angled ΔDOB , ∠ODB + ∠DOB + ∠OBD = 180° ⇒ x + 90° + y =180° (using equation i) ⇒ x + y = 90°

Description : In the given figure, if chords AB and CD of the circle intersect each other at right angles, then find x + y. -Maths 9th

Last Answer : ∴ ∠CAO = ∠ODB = x [angles in same segment ] ---- (i) Now, in right angled ΔDOB , ∠ODB + ∠DOB + ∠OBD = 180° ⇒ x + 90° + y =180° (using equation i) ⇒ x + y = 90°

Description : If the perpendicular bisector of a chord AB of a circle PXAQBY intersects the circle at P and Q, prove that arc PXA = arc PYB. -Maths 9th

Last Answer : Let AB be a chord of a circle having centre at OPQ be the perpendicular bisector of the chord AB, which intersects at M and it always passes through O. To prove arc PXA ≅ arc PYB Construction Join AP and BP. Proof In ... ΔBPM, AM = MB ∠PMA = ∠PMB PM = PM ∴ ΔAPM s ΔBPM ∴PA = PB ⇒arc PXA ≅ arc PYB

Description : If the perpendicular bisector of a chord AB of a circle PXAQBY intersects the circle at P and Q, prove that arc PXA = arc PYB. -Maths 9th

Last Answer : Let AB be a chord of a circle having centre at OPQ be the perpendicular bisector of the chord AB, which intersects at M and it always passes through O. To prove arc PXA ≅ arc PYB Construction Join AP and BP. Proof In ... ΔBPM, AM = MB ∠PMA = ∠PMB PM = PM ∴ ΔAPM s ΔBPM ∴PA = PB ⇒arc PXA ≅ arc PYB

Description : If the perpendicular bisector of a chord AB of a circle PXAQBY intersects the circle at P and Q, then prove that arc PXA ≅ arc PYB. -Maths 9th

Last Answer : Solution :- Let AB be a chord of a circle having centre at O. Let PQ be the perpendicular bisector of the chord AB intersect it say at M. Perpendicular bisector of the chord passes through the centre of the circle,i. ... = PM (Common) ∴ △APM ≅ △BPM (SAS) PA = PB (CPCT) Hence, arc PXA ≅ arc PYB

Description : The diagonals AC and BD of parallelogram ABCD intersect at the point O. -Maths 9th

Last Answer : ABCD is a parallelogram . ∴ AD | | BC ⇒ ∠ACB = ∠DAC = 34° Now, ∠AOB is an exterior angle of △BOC ∴ ∠OBC + OCB = ∠AOB [∵ ext ∠ = sum of two int. opp. ∠S] ⇒ ∠OBC + 34° = 75° ⇒ ∠OBC = 75° - 34° = 41° or ∠DBC = 41°

Description : The diagonals AC and BD of a parallelogram ABCD intersect each other at the point 0. -Maths 9th

Last Answer : According to question parallelogram ABCD intersect each other at the point 0. If ∠DAC = 32° and ∠AOB = 70°.

Description : Diagonals AC and BD of a parallelogram ABCD intersect each other at O. -Maths 9th

Last Answer : According to parallelogram ABCD intersect each other at O. If OA = 3 cm and OD = 2 cm, determine the lengths of AC and BD.

Description : The diagonals of a parallelogram ABCD intersect at a point O. -Maths 9th

Last Answer : According to question PQ divides the parallelogram into two parts of equal area.

Description : The diagonals AC and BD of parallelogram ABCD intersect at the point O. -Maths 9th

Last Answer : ABCD is a parallelogram . ∴ AD | | BC ⇒ ∠ACB = ∠DAC = 34° Now, ∠AOB is an exterior angle of △BOC ∴ ∠OBC + OCB = ∠AOB [∵ ext ∠ = sum of two int. opp. ∠S] ⇒ ∠OBC + 34° = 75° ⇒ ∠OBC = 75° - 34° = 41° or ∠DBC = 41°

Description : The diagonals AC and BD of a parallelogram ABCD intersect each other at the point 0. -Maths 9th

Last Answer : According to question parallelogram ABCD intersect each other at the point 0. If ∠DAC = 32° and ∠AOB = 70°.

Description : Diagonals AC and BD of a parallelogram ABCD intersect each other at O. -Maths 9th

Last Answer : According to parallelogram ABCD intersect each other at O. If OA = 3 cm and OD = 2 cm, determine the lengths of AC and BD.

Description : The diagonals of a parallelogram ABCD intersect at a point O. -Maths 9th

Last Answer : According to question PQ divides the parallelogram into two parts of equal area.

Description : ABCD is a parallelogram. The diagonals AC and BD intersect at the point O. If E, F, G and H are the mid-points of AO, DO, CO and BO respectively -Maths 9th

Last Answer : answer:

Description : The area of parallelogram PQRS is 88 cm sq. A perpendicular from S is drawn to intersect PQ at M. If SM = 8 cm, then find the length of PQ. -Maths 9th

Last Answer : Given area of parallelogram = 88 cm² And SM = 8cm Area of a parallelogram = height × base (Height is the measurement of a perpendicular drawn from one side to other) Here, Area of PQRS = SM × PQ 88cm² = 8cm × PQ 11cm = PQ

Description : Two circles intersect at A and B. AC and AD are respectively the diameters of the circles. Prove that C, B and D are collinear. -Maths 9th

Last Answer : Join CB, BD and AB, Since, AC is a diameter of the circle with centre O. ∴ ∠ABC = 90° [angle in semi circle] ---- (i) Also, AD is a diameter of the circle with center O . ∴ ∠ABD = 90° [angle in ... ⇒ ∠ABC + ∠ABD = 180° So. CBD is a straight line. Hence C, B and D are collinear . Hence proved.

Description : Prove that two lines that are respectively perpendicular to two intersecting lines intersect each other. -Maths 9th

Last Answer : Given Let lines l and m are two intersecting lines. Again, let n and p be another two lines which are perpendicular to the intersecting lines meet at point D. To prove Two lines n and p ... is a contradiction. Thus, our assumption is wrong. Therefore, lines n and p intersect at a point.

Description : If two equal chords of a circle intersect, prove that the parts of one chord are separately equal to the parts of the other chord. -Maths 9th

Last Answer : Explanation of this question

Description : Two equal chords AB and CD of a circle when produced intersect at a point P. Prove that PB = PD. -Maths 9th

Last Answer : According to question prove that PB = PD.

Description : Two circles intersect at A and B. AC and AD are respectively the diameters of the circles. Prove that C, B and D are collinear. -Maths 9th

Last Answer : Join CB, BD and AB, Since, AC is a diameter of the circle with centre O. ∴ ∠ABC = 90° [angle in semi circle] ---- (i) Also, AD is a diameter of the circle with center O . ∴ ∠ABD = 90° [angle in ... ⇒ ∠ABC + ∠ABD = 180° So. CBD is a straight line. Hence C, B and D are collinear . Hence proved.

Description : Prove that two lines that are respectively perpendicular to two intersecting lines intersect each other. -Maths 9th

Last Answer : Given Let lines l and m are two intersecting lines. Again, let n and p be another two lines which are perpendicular to the intersecting lines meet at point D. To prove Two lines n and p ... is a contradiction. Thus, our assumption is wrong. Therefore, lines n and p intersect at a point.

Description : If two equal chords of a circle intersect, prove that the parts of one chord are separately equal to the parts of the other chord. -Maths 9th

Last Answer : Explanation of this question

Description : Two equal chords AB and CD of a circle when produced intersect at a point P. Prove that PB = PD. -Maths 9th

Last Answer : According to question prove that PB = PD.