Let ABCD be a parallellogram. Let m and n be positive integers such that n < m < 2n. Let AC = 2 mn -Maths 9th

1 Answer

Answer :

answer:

Related questions

Description : In Fig. 8.40, points M and N are taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AM = CN. Show that AC and MN bisect each other. -Maths 9th

Last Answer : Solution :-

Description : Let ABCD be a quadrilateral. Let X and Y be the mid-points of AC and BD respectively and the lines through X and Y respectively -Maths 9th

Last Answer : answer:

Description : The diagonals AC and BD of a cyclic quadrilateral ABCD intersect at P. Let O be the circumcentre of ∆APB and H be the orthocentre -Maths 9th

Last Answer : answer:

Description : If (log x)/(l + m - 2n) = (log y)/(m + n - 2l) = (log z)/(n + l - 2m), then xyz is equal to : -Maths 9th

Last Answer : Let l+m−2nlogx​=m+n−2llogy​=n+l−2mlogz​=k(say) So, we get logx=k(l+m−2n) ....... (i) logy=k(m+n−2l) ....... (ii) logz=k(n+l−2m) ....... (iii) ∴logx+logy+logz=k(l+m−2n)+k(m+n−2l)+k(n+l−2m) ⇒logx+logy+logz=kl+km−2kn+km+kn−2kl+kn+kl−2km ⇒log(xyz)=0 ⇒logxyz=log1 ⇒xyz=1

Description : If (log x)/(l + m - 2n) = (log y)/(m + n - 2l) = (log z)/(n + l - 2m), then xyz is equal to : -Maths 9th

Last Answer : (b) 1Let \(rac{ ext{log}\,x}{l+m-2n}\) = \(rac{ ext{log}\,y}{m+n-2l}\) = \(rac{ ext{log}\,z}{n+l-2m}\) = k. Thenlog x = k(l + m – 2n), log y = k(m + n – 2l); log z = k(n + l – 2m) ⇒ log x + log y + log z = k(l + m – 2n) + k(m + n – 2l) + k(n + l – 2m)⇒ log(xyz) = 0 ⇒ log(xyz) = log 1 ⇒ xyz = 1.

Description : Let P(m,n) be the statement m divides n where the Universe of discourse for both the variables is the set of positive integers. Determine the truth values of the following propositions. (a) ∃m ∀n P(m,n) (b) ∀n P(1,n) ( ... -False (C) (a)-False; (b)-False; (c)-False (D) (a)-True; (b)-True; (c)-True

Last Answer : Answer: A

Description : In quadrilateral ABCD of the given figure, X and Y are points on diagonal AC such that AX = CY and BXDY ls a parallelogram. -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : E and F are points on diagonal AC of a parallelogram ABCD such that AE = CF. -Maths 9th

Last Answer : According to question diagonal AC of a parallelogram ABCD such that AE = CF.

Description : Points P and Q have been taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AP = CQ. Show that AC and PQ bisect each other. -Maths 9th

Last Answer : According to question parallelogram ABCD such that AP = CQ.

Description : P and O are points on opposite sides AD and BC of a parallelogram ABCD such that PQ passes through the point of intersection O of its diagonals AC and BD. -Maths 9th

Last Answer : According to question PQ passes through the point of intersection O of its diagonals AC and BD.

Description : In quadrilateral ABCD of the given figure, X and Y are points on diagonal AC such that AX = CY and BXDY ls a parallelogram. -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : E and F are points on diagonal AC of a parallelogram ABCD such that AE = CF. -Maths 9th

Last Answer : According to question diagonal AC of a parallelogram ABCD such that AE = CF.

Description : Points P and Q have been taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AP = CQ. Show that AC and PQ bisect each other. -Maths 9th

Last Answer : According to question parallelogram ABCD such that AP = CQ.

Description : P and O are points on opposite sides AD and BC of a parallelogram ABCD such that PQ passes through the point of intersection O of its diagonals AC and BD. -Maths 9th

Last Answer : According to question PQ passes through the point of intersection O of its diagonals AC and BD.

Description : ABCD is a cyclic quadrilateral such that AC ⊥ BD. AC meet BD at E. Prove that EA^2 + EB^2 + EC^2 + ED^2 = 4R^2, -Maths 9th

Last Answer : answer:

Description : Let X be any point within a square ABCD. On AX a square AXYZ is described such that D is within it. Which one of the following is correct? -Maths 9th

Last Answer : answer:

Description : Let ABCD be a parallelogram. P is any point on the side AB. If DP and CP are joined in such a way that they bisect the angles -Maths 9th

Last Answer : answer:

Description : A trapezium ABCD in which AB || CD is inscribed in a circle with centre O. Suppose the diagonals AC and BD of the trapezium intersect at M -Maths 9th

Last Answer : answer:

Description : PQ and RS are two equal and parallel line segments.Any points M not lying on PQ or RS is joined to Q and S and lines through P parallel to SM meet at N.Prove that line segments MN and PQ are equal and parallel to each other. -Maths 9th

Last Answer : hope its clear

Description : Let R be a relation on the set of integers given by a = 2^k .b for some integer k. Then R is -Maths 9th

Last Answer : (c) equivalence relationGiven, a R b = a = 2k .b for some integer. Reflexive: a R a ⇒ a = 20.a for k = 0 (an integer). True Symmetric: a R b ⇒ a = 2k b ⇒ b = 2-k . a ⇒ b R a as k, -k are both ... = 2k1 + k2 c, k1 + k2 is an integer. ∴ a R b, b R c ⇒ a R c True ∴ R is an equivalence relation.

Description : An integer is chosen at random from the first two hundred positive integers. What is the probability that the integer chosen is divisible by 6 or 8 ? -Maths 9th

Last Answer : As there are 200 integers, total number of exhaustive, mutually exclusive and equally likely cases, i.e, n(S) = 200 Let A : Event of integer chosen from 1 to 200 being divisible by 6⇒ n(A) = 33 \(\bigg(rac{200}{6}=33rac{1}{3}\ ... (rac{25}{200}\) - \(rac{8}{200}\) = \(rac{50}{200}\) = \(rac{1}{4}\).

Description : If a, b, c are distinct positive integers, then ax^(b–c) + bx^(c–a) + cx^(a–b) is -Maths 9th

Last Answer : answer:

Description : A bag contains 2n + 1 coins. It is known that n of these coins have a head on both sides, whereas the remaining (n + 1) coins are fair. -Maths 9th

Last Answer : (a) 10As (n + 1) coins are fair P (Tossing a tail) = \(rac{rac{n+1}{2}}{2n+1}\) = \(rac{n+1}{2(2n+1)}\)∴ P (Tossing a head) = 1 - \(rac{n+1}{2(2n+1)}\) = \(rac{4n+2-n-1}{2(2n+1)}\) = \(rac{3n+1}{4n+2}\)Given, \(rac{3n+1}{4n+2}\) = \(rac{31}{42}\)⇒ 126n + 42 = 124n + 62 ⇒ 2n = 20 ⇒ n = 10.

Description : If C(2n, 3) : C(n, 2) = 12 : 1 find n. -Maths 9th

Last Answer : answer:

Description : Prove that 2.4.6 ........... (2n) < (n + 1)^n. -Maths 9th

Last Answer : answer:

Description : If ((n+1)/2)^n ((2n+1)/3)^n > (n!)^k, then k = -Maths 9th

Last Answer : answer:

Description : If n integers taken at random are multiplied together, then the probability that the last digit of the product is 1, 3, 7 or 9 is -Maths 9th

Last Answer : (d) 226 × 52C26 | 104C26Since there are 52 distinct cards in a deck and each distinct card is 2 in number.∴2 decks will also contain only 52 distinct cards, two each.∴ Probability that the player gets all distinct cards = \(rac{^{52}C_{26} imes2^{26}}{^{104}C_{26}}\).

Description : Find the area of a quadrilateral ABCD in which AB = 3 cm, BC = 4 cm, CD = 4 cm, DA = 5 cm and AC = 5 cm. -Maths 9th

Last Answer : Given a quadrilateral ABCD with AB = 3 cm, BC = 4 cm, CD = 4 cm, DA = 5 cm and AC = 5 cm. For ∆ABC, a = AB = 3 cm, b = BC = 4 cm and c = AC = 5 cm Now, area of quadrilateral ABCD = area of ∆ABC + area of ∆ACD = 6 cm2 + 9.2 cm2 = 15.2 cm2 (approx.)

Description : ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see Fig 8.29). AC is a diagonal. Show that: (i) SR || AC and SR = 1/2 AC (ii) PQ = SR (iii) PQRS is a parallelogram. -Maths 9th

Last Answer : . Solution: (i) In ΔDAC, R is the mid point of DC and S is the mid point of DA. Thus by mid point theorem, SR || AC and SR = ½ AC (ii) In ΔBAC, P is the mid point of AB and Q is the mid point of BC. ... ----- from question (ii) ⇒ SR || PQ - from (i) and (ii) also, PQ = SR , PQRS is a parallelogram.

Description : ABCD is a trapezium in which AB || CD and AD = BC (see Fig. 8.23). Show that (i) ∠A = ∠B (ii) ∠C = ∠D (iii) ΔABC ≅ ΔBAD (iv) diagonal AC = diagonal BD [Hint : Extend AB and draw a line through C parallel to DA intersecting AB produced at E.] -Maths 9th

Last Answer : ] Solution: To Construct: Draw a line through C parallel to DA intersecting AB produced at E. (i) CE = AD (Opposite sides of a parallelogram) AD = BC (Given) , BC = CE ⇒∠CBE = ∠CEB also, ∠A+∠CBE = ... BC (Given) , ΔABC ≅ ΔBAD [SAS congruency] (iv) Diagonal AC = diagonal BD by CPCT as ΔABC ≅ ΔBA.

Description : ABCD is a rectangle in which diagonal AC bisects ∠A as well as ∠C. Show that: (i) ABCD is a square (ii) Diagonal BD bisects ∠B as well as ∠D. -Maths 9th

Last Answer : Solution: (i) ∠DAC = ∠DCA (AC bisects ∠A as well as ∠C) ⇒ AD = CD (Sides opposite to equal angles of a triangle are equal) also, CD = AB (Opposite sides of a rectangle) ,AB = BC = CD = AD Thus ... interior angles) ⇒ ∠CBD = ∠ABD Thus, BD bisects ∠B Now, ∠CBD = ∠ADB ⇒ ∠CDB = ∠ADB Thus, BD bisects ∠D

Description : Diagonal AC of a parallelogram ABCD bisects ∠A (see Fig. 8.19). Show that (i) it bisects ∠C also, (ii) ABCD is a rhombus. -Maths 9th

Last Answer : . Solution: (i) In ΔADC and ΔCBA, AD = CB (Opposite sides of a parallelogram) DC = BA (Opposite sides of a parallelogram) AC = CA (Common Side) , ΔADC ≅ ΔCBA [SSS congruency] Thus, ∠ACD = ∠CAB by ... are equal) Also, AB = BC = CD = DA (Opposite sides of a parallelogram) Thus, ABCD is a rhombus.

Description : In trapezium ABCD, AB|| DC and diagonals AC and BD intersect at O. If area of triangle AOD is 30cm square , find the area of triangle BOC -Maths 9th

Last Answer : In the given figure: Area of triangle ADC = Area of triangle BCD (Triangles on the same and parallel) Now subtract the area of triangle DOC from both of them so... (Area of triangle ADC - Area of ... => Area of triangle AOD = Area of triangle BOC Hence the area of triangle BOC is 30 cm square.

Description : a squar ABCD in which AC =BE when BC produced .A is joined to E prove that FG=GE when AE intersect BD at F and CD at G -Maths 9th

Last Answer : Please give the figure to get your answer, as it is necessary to have figure to answer the question related to geometry.

Description : The diagonals AC and BD of parallelogram ABCD intersect at the point O. -Maths 9th

Last Answer : ABCD is a parallelogram . ∴ AD | | BC ⇒ ∠ACB = ∠DAC = 34° Now, ∠AOB is an exterior angle of △BOC ∴ ∠OBC + OCB = ∠AOB [∵ ext ∠ = sum of two int. opp. ∠S] ⇒ ∠OBC + 34° = 75° ⇒ ∠OBC = 75° - 34° = 41° or ∠DBC = 41°

Description : Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. -Maths 9th

Last Answer : Draw AM ⟂ BD and CL ⟂ BD. Now, ar(△APB) × ar(△CPD) = {1/2 PB × AM} × {1/2 DP × CL} = {1/2 PB × CL} × {1/2 DP × AM} ar(△BPC) × ar(△APD) Hence, ar(△APB) × ar(△CPD) = ar(△APD) × ar(△BPC)

Description : The diagonals AC and BD of a parallelogram ABCD intersect each other at the point 0. -Maths 9th

Last Answer : According to question parallelogram ABCD intersect each other at the point 0. If ∠DAC = 32° and ∠AOB = 70°.

Description : Diagonals AC and BD of a parallelogram ABCD intersect each other at O. -Maths 9th

Last Answer : According to parallelogram ABCD intersect each other at O. If OA = 3 cm and OD = 2 cm, determine the lengths of AC and BD.

Description : P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. -Maths 9th

Last Answer : Given In a quadrilateral ABCD, P, Q, R and S are the mid-points of sides AB, BC, CD and DA, respectively. Also, AC = BD To prove PQRS is a rhombus.

Description : P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. -Maths 9th

Last Answer : Given In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Also, AC = BD and AC ⊥ BD. To prove PQRS is a square. Proof Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

Description : ABCD is a quadrilateral whose diagonal AC divides it into two parts, equal in area, then ABCD -Maths 9th

Last Answer : (d) Here, ABCD need not be any of rectangle, rhombus and parallelogram because if ABCD is a square, then its diagonal AC also divides it into two parts which are equal in area.

Description : In trapezium ABCD, AB|| DC and diagonals AC and BD intersect at O. If area of triangle AOD is 30cm square , find the area of triangle BOC -Maths 9th

Last Answer : In the given figure: Area of triangle ADC = Area of triangle BCD (Triangles on the same and parallel) Now subtract the area of triangle DOC from both of them so... (Area of triangle ADC - Area of ... => Area of triangle AOD = Area of triangle BOC Hence the area of triangle BOC is 30 cm square.

Description : a squar ABCD in which AC =BE when BC produced .A is joined to E prove that FG=GE when AE intersect BD at F and CD at G -Maths 9th

Last Answer : Please give the figure to get your answer, as it is necessary to have figure to answer the question related to geometry.

Description : The diagonals AC and BD of parallelogram ABCD intersect at the point O. -Maths 9th

Last Answer : ABCD is a parallelogram . ∴ AD | | BC ⇒ ∠ACB = ∠DAC = 34° Now, ∠AOB is an exterior angle of △BOC ∴ ∠OBC + OCB = ∠AOB [∵ ext ∠ = sum of two int. opp. ∠S] ⇒ ∠OBC + 34° = 75° ⇒ ∠OBC = 75° - 34° = 41° or ∠DBC = 41°

Description : Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. -Maths 9th

Last Answer : Draw AM ⟂ BD and CL ⟂ BD. Now, ar(△APB) × ar(△CPD) = {1/2 PB × AM} × {1/2 DP × CL} = {1/2 PB × CL} × {1/2 DP × AM} ar(△BPC) × ar(△APD) Hence, ar(△APB) × ar(△CPD) = ar(△APD) × ar(△BPC)

Description : The diagonals AC and BD of a parallelogram ABCD intersect each other at the point 0. -Maths 9th

Last Answer : According to question parallelogram ABCD intersect each other at the point 0. If ∠DAC = 32° and ∠AOB = 70°.

Description : Diagonals AC and BD of a parallelogram ABCD intersect each other at O. -Maths 9th

Last Answer : According to parallelogram ABCD intersect each other at O. If OA = 3 cm and OD = 2 cm, determine the lengths of AC and BD.

Description : P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. -Maths 9th

Last Answer : Given In a quadrilateral ABCD, P, Q, R and S are the mid-points of sides AB, BC, CD and DA, respectively. Also, AC = BD To prove PQRS is a rhombus.

Description : P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. -Maths 9th

Last Answer : Given In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Also, AC = BD and AC ⊥ BD. To prove PQRS is a square. Proof Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

Description : ABCD is a quadrilateral whose diagonal AC divides it into two parts, equal in area, then ABCD -Maths 9th

Last Answer : (d) Here, ABCD need not be any of rectangle, rhombus and parallelogram because if ABCD is a square, then its diagonal AC also divides it into two parts which are equal in area.