The diagonals AC and BD of parallelogram ABCD intersect at the point O. -Maths 9th

1 Answer

Answer :

ABCD is a parallelogram . ∴ AD | | BC ⇒  ∠ACB = ∠DAC = 34° Now, ∠AOB is an exterior angle of △BOC   ∴ ∠OBC + OCB =  ∠AOB [∵ ext  ∠ = sum of two int. opp. ∠S] ⇒ ∠OBC + 34° = 75°  ⇒  ∠OBC  = 75° - 34° = 41°   or ∠DBC = 41°       

Related questions

Description : The diagonals AC and BD of parallelogram ABCD intersect at the point O. -Maths 9th

Last Answer : ABCD is a parallelogram . ∴ AD | | BC ⇒ ∠ACB = ∠DAC = 34° Now, ∠AOB is an exterior angle of △BOC ∴ ∠OBC + OCB = ∠AOB [∵ ext ∠ = sum of two int. opp. ∠S] ⇒ ∠OBC + 34° = 75° ⇒ ∠OBC = 75° - 34° = 41° or ∠DBC = 41°

Description : ABCD is a parallelogram. The diagonals AC and BD intersect at the point O. If E, F, G and H are the mid-points of AO, DO, CO and BO respectively -Maths 9th

Last Answer : answer:

Description : Diagonals AC and BD of a parallelogram ABCD intersect each other at O. -Maths 9th

Last Answer : According to parallelogram ABCD intersect each other at O. If OA = 3 cm and OD = 2 cm, determine the lengths of AC and BD.

Description : Diagonals AC and BD of a parallelogram ABCD intersect each other at O. -Maths 9th

Last Answer : According to parallelogram ABCD intersect each other at O. If OA = 3 cm and OD = 2 cm, determine the lengths of AC and BD.

Description : The diagonals AC and BD of a parallelogram ABCD intersect each other at the point 0. -Maths 9th

Last Answer : According to question parallelogram ABCD intersect each other at the point 0. If ∠DAC = 32° and ∠AOB = 70°.

Description : The diagonals AC and BD of a parallelogram ABCD intersect each other at the point 0. -Maths 9th

Last Answer : According to question parallelogram ABCD intersect each other at the point 0. If ∠DAC = 32° and ∠AOB = 70°.

Description : P and O are points on opposite sides AD and BC of a parallelogram ABCD such that PQ passes through the point of intersection O of its diagonals AC and BD. -Maths 9th

Last Answer : According to question PQ passes through the point of intersection O of its diagonals AC and BD.

Description : P and O are points on opposite sides AD and BC of a parallelogram ABCD such that PQ passes through the point of intersection O of its diagonals AC and BD. -Maths 9th

Last Answer : According to question PQ passes through the point of intersection O of its diagonals AC and BD.

Description : Diagonals AC and BC of parallelogram ABCD Intersect at point O. Angle BOC=90° and BDC=50°.find angle OAB. -Maths 9th

Last Answer : NEED ANSWER

Description : Diagonals AC and BC of parallelogram ABCD Intersect at point O. Angle BOC=90° and BDC=50°.find angle OAB. -Maths 9th

Last Answer : Its given ABCD is a IIgram and AC and BD are its diagonals intersecting at point O. . Given : angle BOC = 900 angle BDC = 500 To find : angle OAB Answer : i) ...

Description : In trapezium ABCD, AB|| DC and diagonals AC and BD intersect at O. If area of triangle AOD is 30cm square , find the area of triangle BOC -Maths 9th

Last Answer : In the given figure: Area of triangle ADC = Area of triangle BCD (Triangles on the same and parallel) Now subtract the area of triangle DOC from both of them so... (Area of triangle ADC - Area of ... => Area of triangle AOD = Area of triangle BOC Hence the area of triangle BOC is 30 cm square.

Description : In trapezium ABCD, AB|| DC and diagonals AC and BD intersect at O. If area of triangle AOD is 30cm square , find the area of triangle BOC -Maths 9th

Last Answer : In the given figure: Area of triangle ADC = Area of triangle BCD (Triangles on the same and parallel) Now subtract the area of triangle DOC from both of them so... (Area of triangle ADC - Area of ... => Area of triangle AOD = Area of triangle BOC Hence the area of triangle BOC is 30 cm square.

Description : The diagonals AC and BD of a cyclic quadrilateral ABCD intersect at P. Let O be the circumcentre of ∆APB and H be the orthocentre -Maths 9th

Last Answer : answer:

Description : A trapezium ABCD in which AB || CD is inscribed in a circle with centre O. Suppose the diagonals AC and BD of the trapezium intersect at M -Maths 9th

Last Answer : answer:

Description : Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. -Maths 9th

Last Answer : Draw AM ⟂ BD and CL ⟂ BD. Now, ar(△APB) × ar(△CPD) = {1/2 PB × AM} × {1/2 DP × CL} = {1/2 PB × CL} × {1/2 DP × AM} ar(△BPC) × ar(△APD) Hence, ar(△APB) × ar(△CPD) = ar(△APD) × ar(△BPC)

Description : Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. -Maths 9th

Last Answer : Draw AM ⟂ BD and CL ⟂ BD. Now, ar(△APB) × ar(△CPD) = {1/2 PB × AM} × {1/2 DP × CL} = {1/2 PB × CL} × {1/2 DP × AM} ar(△BPC) × ar(△APD) Hence, ar(△APB) × ar(△CPD) = ar(△APD) × ar(△BPC)

Description : ABCD is a parallelogram whose diagonals intersect at O. If P is any point on BO, prove that : -Maths 9th

Last Answer : (i) Since diagonals of a parallelogram bisect each other. ∴ O is the mid - point AC as well as BD. In △ADC, OD is a median. ∴ ar(△ADO) = ar(△CDO) [∵ A median of a triangle divide it into two triangles of equal ... and (i) , we have ar(△AOB) - ar(△AOP) = ar(△BOC) - ar(△COP) ⇒ ar(△ABP) = (△CBP)

Description : The diagonals of a parallelogram ABCD intersect at a point O. -Maths 9th

Last Answer : According to question PQ divides the parallelogram into two parts of equal area.

Description : ABCD is a parallelogram whose diagonals intersect at O. If P is any point on BO, prove that : -Maths 9th

Last Answer : (i) Since diagonals of a parallelogram bisect each other. ∴ O is the mid - point AC as well as BD. In △ADC, OD is a median. ∴ ar(△ADO) = ar(△CDO) [∵ A median of a triangle divide it into two triangles of equal ... and (i) , we have ar(△AOB) - ar(△AOP) = ar(△BOC) - ar(△COP) ⇒ ar(△ABP) = (△CBP)

Description : The diagonals of a parallelogram ABCD intersect at a point O. -Maths 9th

Last Answer : According to question PQ divides the parallelogram into two parts of equal area.

Description : a squar ABCD in which AC =BE when BC produced .A is joined to E prove that FG=GE when AE intersect BD at F and CD at G -Maths 9th

Last Answer : Please give the figure to get your answer, as it is necessary to have figure to answer the question related to geometry.

Description : a squar ABCD in which AC =BE when BC produced .A is joined to E prove that FG=GE when AE intersect BD at F and CD at G -Maths 9th

Last Answer : Please give the figure to get your answer, as it is necessary to have figure to answer the question related to geometry.

Description : ABCD is a parallelogram and O is the point of intersection of its diagonals. -Maths 9th

Last Answer : Here, ABCD is a parallelogram in which its diagonals AC and BD intersect each other in O. ∴ O is the mid - point of AC as well as BD. Now, in △ADB , AO is its median ∴ ar(△ADB) = 2 ar(△AOD) [ ∵ median ... AB and lie between same parallel AB and CD . ∴ ar(ABCD) = 2 ar(△ADB) = 2 8 = 16 cm2

Description : ABCD is a parallelogram and O is the point of intersection of its diagonals. -Maths 9th

Last Answer : Here, ABCD is a parallelogram in which its diagonals AC and BD intersect each other in O. ∴ O is the mid - point of AC as well as BD. Now, in △ADB , AO is its median ∴ ar(△ADB) = 2 ar(△AOD) [ ∵ median ... AB and lie between same parallel AB and CD . ∴ ar(ABCD) = 2 ar(△ADB) = 2 8 = 16 cm2

Description : In a trapezium ABCD, AB is parallel to CD and the diagonals intersect each other at O. In this case, the ratio OA/OC is equal to: -Maths 9th

Last Answer : answer:

Description : ABCD is a trapezium with AB and CD as parallel sides. The diagonals intersect at O. The area of the triangle ABO is p and that of triangle CDO is q. -Maths 9th

Last Answer : answer:

Description : BD is one of the diagonals of a quadrilateral ABCD. AM and CN are the perpendiculars from A and C respectively on BD . -Maths 9th

Last Answer : We know that area of a triangle = 1/2 × base × altitude ∴ ar(△ABD) = 1/2 × BD × AM and ar(△BCD) = 1/2 BD × CN Now, ar(quad. ABCD) = ar(△ABD) + ar(△BCD) = 1/2 × BD × AM + 1/2 × BD × CN = 1/2 × BD × (AM + CN)

Description : BD is one of the diagonals of a quadrilateral ABCD. AM and CN are the perpendiculars from A and C respectively on BD . -Maths 9th

Last Answer : We know that area of a triangle = 1/2 × base × altitude ∴ ar(△ABD) = 1/2 × BD × AM and ar(△BCD) = 1/2 BD × CN Now, ar(quad. ABCD) = ar(△ABD) + ar(△BCD) = 1/2 × BD × AM + 1/2 × BD × CN = 1/2 × BD × (AM + CN)

Description : abcd is a rectangle and bd is one of its diagonals if area of triangle abd is 8cm^2 find are of triangle bcd -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : 5. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see Fig. 8.31). Show that the line segments AF and EC trisect the diagonal BD. -Maths 9th

Last Answer : . Solution: Given that, ABCD is a parallelogram. E and F are the mid-points of sides AB and CD respectively. To show, AF and EC trisect the diagonal BD. Proof, ABCD is a parallelogram , AB || CD also, ... (i), DP = PQ = BQ Hence, the line segments AF and EC trisect the diagonal BD. Hence Proved.

Description : ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD (see Fig. 8.21). Show that (i) ΔAPB ≅ ΔCQD (ii) AP = CQ -Maths 9th

Last Answer : Q Solution: (i) In ΔAPB and ΔCQD, ∠ABP = ∠CDQ (Alternate interior angles) ∠APB = ∠CQD (= 90o as AP and CQ are perpendiculars) AB = CD (ABCD is a parallelogram) , ΔAPB ≅ ΔCQD [AAS congruency] (ii) As ΔAPB ≅ ΔCQD. , AP = CQ [CPCT]

Description : ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD . -Maths 9th

Last Answer : In gm ABCD , AP and CQ are perpendicular from the vertices A and C on diagonal BD. Show that : (i) AAPB ≅ ACQD (ii) AP = CQ .

Description : ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD . -Maths 9th

Last Answer : In gm ABCD , AP and CQ are perpendicular from the vertices A and C on diagonal BD. Show that : (i) AAPB ≅ ACQD (ii) AP = CQ .

Description : In Fig. 8.37, ABCD is a parallelogram and P, Q are the points on the diagonal BD such that BQ = DP. Show what APCQ is a parallelogram. -Maths 9th

Last Answer : Solution :-

Description : The middle points of the parallel sides AB and CD of a parallelogram ABCD are P and Q respectively. If AQ and CP divide the diagonal BD -Maths 9th

Last Answer : answer:

Description : ABCD is a parallelogram.The circle through A,B and C intersect CD (produce if necessary) at E.Prove that AE = AD. -Maths 9th

Last Answer : Solution :- ∠ABC + ∠AEC = 1800 (Opposite angles of cyclic quadrilateral) .. . (i) ∠ADE + ∠ADC = 1800 (Linear pair) But ∠ADC = ∠ABC (Opposite angles of ||gm) ∴ ∠ADE + ∠ABC = 1800 .. (ii) ... ∠ABC + ∠AEC = ∠ADE + ∠ABC ⇒ ∠AEC = ∠ADE ⇒ AD = AE (sides opposite to equal angles)

Description : ABCD is a trapezium in which AB || CD and AD = BC (see Fig. 8.23). Show that (i) ∠A = ∠B (ii) ∠C = ∠D (iii) ΔABC ≅ ΔBAD (iv) diagonal AC = diagonal BD [Hint : Extend AB and draw a line through C parallel to DA intersecting AB produced at E.] -Maths 9th

Last Answer : ] Solution: To Construct: Draw a line through C parallel to DA intersecting AB produced at E. (i) CE = AD (Opposite sides of a parallelogram) AD = BC (Given) , BC = CE ⇒∠CBE = ∠CEB also, ∠A+∠CBE = ... BC (Given) , ΔABC ≅ ΔBAD [SAS congruency] (iv) Diagonal AC = diagonal BD by CPCT as ΔABC ≅ ΔBA.

Description : ABCD is a rectangle in which diagonal AC bisects ∠A as well as ∠C. Show that: (i) ABCD is a square (ii) Diagonal BD bisects ∠B as well as ∠D. -Maths 9th

Last Answer : Solution: (i) ∠DAC = ∠DCA (AC bisects ∠A as well as ∠C) ⇒ AD = CD (Sides opposite to equal angles of a triangle are equal) also, CD = AB (Opposite sides of a rectangle) ,AB = BC = CD = AD Thus ... interior angles) ⇒ ∠CBD = ∠ABD Thus, BD bisects ∠B Now, ∠CBD = ∠ADB ⇒ ∠CDB = ∠ADB Thus, BD bisects ∠D

Description : P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. -Maths 9th

Last Answer : Given In a quadrilateral ABCD, P, Q, R and S are the mid-points of sides AB, BC, CD and DA, respectively. Also, AC = BD To prove PQRS is a rhombus.

Description : P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. -Maths 9th

Last Answer : Given In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Also, AC = BD and AC ⊥ BD. To prove PQRS is a square. Proof Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

Description : P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. -Maths 9th

Last Answer : Given In a quadrilateral ABCD, P, Q, R and S are the mid-points of sides AB, BC, CD and DA, respectively. Also, AC = BD To prove PQRS is a rhombus.

Description : P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. -Maths 9th

Last Answer : Given In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Also, AC = BD and AC ⊥ BD. To prove PQRS is a square. Proof Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

Description : Show that in a quadrilateral ABCD,AB + BC + CD + DA > AC + BD. -Maths 9th

Last Answer : Solution :-

Description : AC and BD are chords of a circle that bisect each other. Prove that AC and BD are diameters and ABCD is a rectangle. -Maths 9th

Last Answer : Solution :- Let AC and BD bisect each other at point 0. Then, OA = OC and OB = OD In triangles AOB and COD, we have OA = OC OB = OD and ∠ AOB = ∠ COD (Vertically opposite angles) ∴ △ AOB ... ∠ADC Also, ∠BAD = 90° = ∠BCD Also, AB = CD and BC = DA (Proved above) Hence, ABCD is a rectangle.

Description : Let ABCD be a quadrilateral. Let X and Y be the mid-points of AC and BD respectively and the lines through X and Y respectively -Maths 9th

Last Answer : answer:

Description : ABCD is a cyclic quadrilateral such that AC ⊥ BD. AC meet BD at E. Prove that EA^2 + EB^2 + EC^2 + ED^2 = 4R^2, -Maths 9th

Last Answer : answer:

Description : In a trapezium ABCD, AB is parallel to CD, BD is perpendicular to AD. AC is perpendicular to BC. If AD = BC = 15 cm and AB = 25 cm, -Maths 9th

Last Answer : answer:

Description : In parallelogram ABCD AC is congruent to BD. determine whether the parallelogram is a rectangle?

Last Answer : Yes, it is.

Description : ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see Fig 8.29). AC is a diagonal. Show that: (i) SR || AC and SR = 1/2 AC (ii) PQ = SR (iii) PQRS is a parallelogram. -Maths 9th

Last Answer : . Solution: (i) In ΔDAC, R is the mid point of DC and S is the mid point of DA. Thus by mid point theorem, SR || AC and SR = ½ AC (ii) In ΔBAC, P is the mid point of AB and Q is the mid point of BC. ... ----- from question (ii) ⇒ SR || PQ - from (i) and (ii) also, PQ = SR , PQRS is a parallelogram.

Description : Diagonal AC of a parallelogram ABCD bisects ∠A (see Fig. 8.19). Show that (i) it bisects ∠C also, (ii) ABCD is a rhombus. -Maths 9th

Last Answer : . Solution: (i) In ΔADC and ΔCBA, AD = CB (Opposite sides of a parallelogram) DC = BA (Opposite sides of a parallelogram) AC = CA (Common Side) , ΔADC ≅ ΔCBA [SSS congruency] Thus, ∠ACD = ∠CAB by ... are equal) Also, AB = BC = CD = DA (Opposite sides of a parallelogram) Thus, ABCD is a rhombus.