How many words can be formed from the letters of the word “DAUGHTER” so that the vowels always come together? -Maths 9th

1 Answer

Answer :

The number of words formed from 'DAUGHTER' such that all vowels are together is 4320.

Related questions

Description : How many words can be formed from the letters of the word “SUNDAY” so that the vowels never come together? -Maths 9th

Last Answer : Given: The word ‘SUNDAY’ Total number of letters in the word ‘SUNDAY’ is 6. So, number of arrangements of 6 things, taken all at a time is 6P6 = 6! = 6 ... of words using letters of ‘SUNDAY’ starting with ‘N’ and ending with ‘Y’ is 24

Description : The letters of the word ‘SOCIETY’ are placed at random in a row. What is the probability that three vowels come together ? -Maths 9th

Last Answer : There are 7 letters in the word SOCIETY. ∴ Total number of ways of arranging all the 7 letters = n(S) = 7!. When the case of three vowels being together is taken, then the three vowels are considered as one unit, so the ... = 5! 3! ∴ Required probability = \(rac{5! imes3!}{7!}\) = \(rac{1}{7}\)

Description : Find how many arrangements can be made with the letters of the word “MATHEMATICS” in which the vowels occur together? -Maths 9th

Last Answer : (i) There are 11 letters in the word 'MATHEMATICS' . Out of these letters M occurs twice, A occurs twice, T occurs twice and the rest are all different. Hence, the total number of arrangements of ... 4!2!=12. Hence, the number of arrangement in which 4 vowels are together =(10080×12)=120960.

Description : In how many different ways can the letters of the word MULTIPLE be arranged so that the vowels always come together? a) 4320 b) 2160 c) 1080 d) 40320 e) 20160

Last Answer : We consider all the three vowels (U, I, E) as one letter, so total number of letters = 6, and three vowels can be arranged in 3! Ways among themselves. However, the letter ‘L’ comes twice. :. Total number of ways = (6! × 3!)/2! = 720 × 3 = 2160 Answer is: b)

Description : In how many different ways can the letters of the word 'SPORADIC' be arranged so that the vowels always come together? A) 120 2 B) 1720 C) 4320 D) 2160 E) 2400

Last Answer : Answer: C) The word 'SPORADIC' contains 8 different letters. When the vowels OAI are always together, they can be supposed to form one letter. Then, we have to arrange the letters SPRDC (OAI). Now, 6 ... be arranged among themselves in 3! = 6 ways. Required number of ways = (720 x 6) = 4320.

Description :  In how many different ways can the letters of the word 'ABOMINABLES' be arranged so that the vowels always come together? A) 181045 B) 201440 C) 12880 D) 504020 E) 151200

Last Answer : Answer: E)  In the word 'ABOMINABLES', we treat the vowels AOIAE as one letter.  Thus, we have BMNBLS (AOIAE).  This has 7 (6 + 1) letters of which B occurs 2 times and the rest are different. Number of ways arranging these letters = 7! / 2!  = (7×6×5×4×3×2×1) / (2×1) = 2520

Description : In how many different ways can the letters of the word "ZYMOGEN" be arranged in such a way that the vowels always come together? a) 1440 b) 1720 c) 2360 d) 2240

Last Answer : Answer: A)  The arrangement is made in such a way that the vowels always come together. i.e., "ZYMGN(OE)". Considering vowels as one letter, 6 different letters can be arranged in 6! ways; i.e., 6! = 720 ... in 2! ways; i.e.,2! = 2 ways Therefore, required number of ways = 720 x 2 = 1440 ways.

Description : In how many different ways can the letters of the word 'VINTAGE' be arranged such that the vowels always come together? A) 720 B) 1440 C) 632 D) 364 E) 546

Last Answer : Answer: A)  It has 3 vowels (IAE) and these 3 vowels should always come together. Hence these 3 vowels can be grouped and considered as a single letter. That is, VNTG(IAE). Hence we can assume total ... ways to arrange these vowels among themselves 3! = 3 2 1=6 Total number of ways 120 6=720

Description :  In how many different ways can the letters of the word 'POTENCY' be arranged in such a way that the vowels always come together? A) 1360 B) 2480 C) 3720 D) 5040 E) 1440

Last Answer : Answer: E)  The word 'POTENCY' has 7 different letters.  When the vowels EO are always together, they can be supposed to form one letter.  Then, we have to arrange the letters PTNCY (EO).  Now, 6 (5 ... be arranged among themselves in 2! = 2 ways.  Required number of ways = (720 x2)  = 1440.

Description : In how many ways can the letters of the word “AFLATOON” be arranged if the consonants and vowels must occupy alternate places? -Maths 9th

Last Answer : 24 ways is the answer

Description : The probability that in the random arrangement of the letters of the word ‘UNIVERSITY’the two I‘s do not come together is -Maths 9th

Last Answer : (b) \(rac{4}{5}\)Let S be the sample space. Then, n(S) = Total number of waysin which the letters of the word UNIVERSITY' can be arranged = \(rac{10!}{2!}\) (∵ There are 2I s) ... ! imes36}{rac{10!}{2!}}\) = \(rac{ ot8! imes36 imes2!}{10 imes9 imes ot8!}\) = \(rac{4}{5}\).

Description : In how many ways letter of the world BANKING can be arranged so that vowels always come together? 1)240 2)120 3)720 4)540

Last Answer : 3)720 Exp: [(6!)/(2!)]×(2!)=360×2=720 [(6!)/(2!)]-letters formed, 2!- Vowels.

Description : All the words that can be formed using the letters A, H, L, U, R are written as in a dictionary -Maths 9th

Last Answer : No. of words starting with A are 4!=24 No. of words starting with H are 4!=24 No. of words starting with L are 4!=24 These account for 72 words Next word is RAHLU and the 74th word RAHUL.

Description : If all the L‘s occur together and also all I‘s occur together, when the letters of the word ‘HALLUCINATION’ are permuted, -Maths 9th

Last Answer : answer:

Description : In how many different ways can the letters of the word DESIGN be arranged so that the vowels are at the two ends? a) 48 b) 66 c) 12 d) 72 e) 96

Last Answer : Total ways = 4 ! x 2 ! = 4 × 3 × 2 x 2= 48 Answer: a)

Description : In how many ways can the letters of the word EDUCATION be rearranged such that the relative positions of the vowels and the consonants remain the same as in the word EDUCATION? a) 9!/4 b) 4!*5! c) 4!*5 d) 9!-4!

Last Answer : b) 4!*5!

Description : In how many different ways can the letters of the word 'DILUTE' be arranged such that the vowels may appear in the even places? a) 36 b) 720 c) 144 d) 24

Last Answer : Answer: A)  There are 3 consonants and 3 vowels in the word DILUTE.  Out of 6 places, 3 places odd and 3 places are even.  3 vowels can arranged in 3 even places in 3p3 ways = 3! = 6 ways.  And then 3 ... 3 places in 3p3 ways = 3! = 6 ways.  Hence, the required number of ways = 6 x 6 = 36.

Description :  In how many different ways can the letters of the word "POMADE" be arranged in such a way that the vowels occupy only the odd positions? a) 72 b) 144 c) 532 d) 36

Last Answer : Answer: D)  There are 6 different letters in the given word, out of which there are 3 vowels and 3 consonants.  Let us mark these positions as under:  [1] [2] [3] [4] [5] [6]  Now, 3 vowels can be ... of these arrangements = 3P3  = 3!  = 6 ways.  Therefore, total number of ways = 6 x 6 = 36.

Description : In how many different ways can the letters of the word "XANTHOUS" be arranged in such a way that the vowels occupy only the odd positions? a) 2880 b) 4320 c) 2140 d) 5420

Last Answer : Answer: A) There are 8 different letters in the given word "XANTHOUS", out of which there are 3 vowels and 5 consonants.  Let us mark these positions as under:  [1] [2] [3] [4] [5] [6] [7] ... in 5P5 ways = 5! Ways  = 120 ways.  Therefore, required number of ways = 24 x 120 = 2880 ways.

Description : In how many different ways can the letters of the word 'RAPINE' be arranged in such a way that the vowels occupy only the odd positions? A) 32 B) 48 C) 36 D) 60 E) 120

Last Answer : Answer: C)  There are 6 letters in the given word, out of which there are 3 vowels and 3 consonants.  Let us mark these positions as under:  (1) (2) (3) (4) (5) (6)  Now, 3 vowels can be placed at ... .  Number of ways of these arrangements = 3P3 = 3! = 6.  Total number of ways = (6 x 6) = 36

Description : Find the number of ways in which 10 different flowers can be strung to form a garland so that three particular flowers are always together -Maths 9th

Last Answer : Consider the three particular flowers as one flower. Then we have (10 – 3) + 1 = 8 flowers which can be strung in the garland. Thus the garland can be formed in (8 – 1)!, i.e., 7! ways But the 3 particular flowers can be arranged amongst themselves in 3!

Description : There are 10 persons who are to be seated around a circular table. Find the probability that two particular persons will always sit together. -Maths 9th

Last Answer : Total number of ways in which 10 person can sit around a circular table = 9! (∵ We shall keep one place fixed and the rest of the 9 places will be filled in (9 8 7 6 5 4 3 2 1) ways asthere is ... probability = \(rac{2 imes8!}{9!}\) = \(rac{2 imes8!}{9 imes8!}\) = \(rac{2}{9}.\)

Description : How many different possible permutations can be made from the word ‘WAGGISH’ such that the vowels are never together? A) 3605 B) 3120 C) 1800 D) 1240 E) 2140

Last Answer : Answer: C)  The word ‘WAGGISH’ contains 7 letters of which 1 letter occurs twice  = 7! / 2! = 2520 No. of permutations possible with vowels always together = 6! * 2! / 2!  = 1440 / 2 = 720 No. of permutations possible with vowels never together = 2520-720  = 1800.

Description : The letters ofthe word ‘NATIONAL’are arranged atrandom. What is the probability that the last letter will be T ? -Maths 9th

Last Answer : (c) \(rac{1}{8}\)Let S be the sample space.Then n(S) = Total number of ways in which the letters of word NATIONAL can be arranged= \(rac{8!}{2!\,2!}\) (∵There are 2A s and 2N's in 8 letters)Let E : Event of ... !}{2!\,2!}}\) = \(rac{7!}{8!}\) = \(rac{7!}{8 imes7!}\) = \(rac{1}{8}\).

Description : The letters of the word ‘COCHIN’ are permuted and all the permutations are arranged in alphabetical order as in English dictionary. -Maths 9th

Last Answer : answer:

Description : There are n letters and n addressed envelopes. If the letters are placed in the envelopes at random, -Maths 9th

Last Answer : Total number of ways of placing n letters in n envelopes = n! All the letters can be placed correctly in only 1 way ∴ Probability of placing all the letters in the right envelopes = \(rac{1}{n!}\) ∴ Probability that all the letters are not placed in the right envelope = 1 – \(rac{1}{n!}\) .

Description : Three letters are randomly selected from the 26 capital letters of the English alphabet. -Maths 9th

Last Answer : (d) \(rac{36}{1001}\)Required probability = \(rac{P( ext{2 blue balls}) imes{P}( ext{2 red balls})}{P( ext{4 balls out of 14 balls})}\) + \(rac{P( ext{2 green balls}) imes{P}( ext{2 black balls})}{P( ext{4 out of 14 balls})}\)

Description : A letter is taken out at random from ‘ASSISTANT’ and another is taken out from ‘STATISTICS’. The probability that they are same letters is -Maths 9th

Last Answer : (c) 0.8645Required probability = P(X not defective and Y not defective) = P(\(\bar{X}\)) x P(\(\bar{Y}\))= (1 – P(X)) (1 – P(Y))= \(\bigg(1-rac{9}{100}\bigg)\)\(\bigg(1-rac{5}{100}\bigg)\)= \(rac{91}{100}\) x \(rac{95}{100}\) = \(rac{8645}{10000}\) = 0.8645.

Description : What words can you think of that can use any of the five vowels, in turn?

Last Answer : tat Tet tit tot tut bat bet bit bot but fan fen fin fon fun

Description : Can you think of any perfectly recognisible & understandable words in the English language, that have each of the vowels in reverse alphabetical order (UOIEA)?

Last Answer : duopixelar (I think I made that up)

Last Answer : : Education in words There are five vowels .

Description : Islamic girl name without vowels words Answer?

Last Answer : Islamic girl name without vowels words? Answer

Description : What is the answer for the number of 3 letter words with or without meaning that can be formed out of the letters of the word LOGARITHMS if repetition of the letters is not allowed?

Last Answer : It is 720.

Description : What is the answer for the number of 3 letter words with or without meaning that can be formed out of the letters of the word LOGARITHMS if repetition of the letters is not allowed?

Last Answer : It is 720.

Description : How many 3 letters words (with or without meaning) can be formed out of the letters of the word, "PLATINUM", if repetition of letters is not allowed? a) 742 b) 850 c) 990 d) 336 

Last Answer : Answer: D)  The word PLATINUM contains 8 different letters. Required number of words = number of arrangements of 8 letters taking 3 at a time.  = 8p3  = 8 x 7 x 6  = 56×6  = 336

Description : How many words can be formed by using all letters of the word 'CABIN'? A) 720 B) 24 C) 120 D) 60 E) None

Last Answer : Answer: C)  The word 'CABIN' has 5 letters and all these 5 letters are different.  Total number of words that can be formed by using all these 5 letters  = 5P5  = 5!  = 5×4×3×2×1  = 120 

Description : From the given alternative words select the word which cannot be formed using the letters of the given word. WAVELENGTH  Options: 1) wheat 2) valet 3) halve 4) given 

Last Answer : Correct Answer: given 

Description : There are 5 boys and 3 girls. In how many ways can they stand in a row so that no two girls are together? -Maths 9th

Last Answer : Have the 55 boys stand in a line. This can be done in 5!5! ways. For the moment, add a boy at each end, who will be removed when we're done. Now send the 33 girls, one at a time, to ... that each girl can either wedge herself between two boys or else stand next to a boy at one end or the other.

Description : Two cubes of side 2 cm each are joined end to end. Find the volume of the cuboid so formed. -Maths 9th

Last Answer : When two cubes of side 2 cm each are joined end to end then, Length (l) = (2 + 2) = 4cm Breadth (b) = 2 cm; Height (h) = 2 cm ∴ Volume of cuboid = lbh = 4 x 2 x 2 = 16 cm3

Description : If the mid-points of the sides of a quadrilateral are joined in order, prove that the area of the parallelogram, so formed will be half of the area of the given quadrilateral (figure). -Maths 9th

Last Answer : According to question prove that the area of the parallelogram

Description : If a line is drawn parallel to the base of an isosceles triangle to intersect its equal sides, prove that the quadrilateral, so formed is cyclic. -Maths 9th

Last Answer : Given ΔABC is an isosceles triangle such that AB = AC and also DE || SC. To prove Quadrilateral BCDE is a cyclic quadrilateral. Construction Draw a circle passes through the points B, C, D and E.

Description : Two cubes of side 2 cm each are joined end to end. Find the volume of the cuboid so formed. -Maths 9th

Last Answer : When two cubes of side 2 cm each are joined end to end then, Length (l) = (2 + 2) = 4cm Breadth (b) = 2 cm; Height (h) = 2 cm ∴ Volume of cuboid = lbh = 4 x 2 x 2 = 16 cm3

Description : If the mid-points of the sides of a quadrilateral are joined in order, prove that the area of the parallelogram, so formed will be half of the area of the given quadrilateral (figure). -Maths 9th

Last Answer : According to question prove that the area of the parallelogram

Description : If a line is drawn parallel to the base of an isosceles triangle to intersect its equal sides, prove that the quadrilateral, so formed is cyclic. -Maths 9th

Last Answer : Given ΔABC is an isosceles triangle such that AB = AC and also DE || SC. To prove Quadrilateral BCDE is a cyclic quadrilateral. Construction Draw a circle passes through the points B, C, D and E.

Description : If a transversal intersects two parallel lines, prove that the bisectors of any pair of corresponding angles so formed are parallel. -Maths 9th

Last Answer : Solution :-

Description : Plot the points A(3, 2), B(-2, 2), C(-2, -2) and D(3, -2) in the cartesian plane. Join these points and name the figure so formed. -Maths 9th

Last Answer : answer:

Description : A small indoor greenhouse (herbarium) is made entirely of glass panes (including base) held together with tape. It is 30cm long, 25 cm wide and 25 cm high. -Maths 9th

Last Answer : Length of greenhouse, say l = 30cm Breadth of greenhouse, say b = 25 cm Height of greenhouse, say h = 25 cm (i) Total surface area of greenhouse = Area of the glass = 2[lb+lh+bh] = [2(30 ... (30+25+25)] (after substituting the values) = 320 Therefore, 320 cm tape is required for all the 12 edges.

Description : 6 boys and 6 girls are seated in a row. Probability that all the boys sit together is -Maths 9th

Last Answer : (d) \(rac{1}{132}\)Let S be the sample space for arranging 6 boys and 6 girls in a row. Then, n(S) = 12! If all 6 boys are to sit together, then consider the 6 boys as one entity. Now the ... ) = \(rac{7 imes6 imes5 imes4 imes3 imes2}{12 imes11 imes10 imes9 imes8 imes7}\) = \(rac{1}{132}\).

Description : A committee of 11 members sit at a round table. In how many ways can they be seated if the “President” and the “Secretary” choose to sit together. -Maths 9th

Last Answer : ∴ Required number of ways of seating = 9!