Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square. -Maths 9th

1 Answer

Answer :

Solution    :-

Related questions

Description : 5. Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square. -Maths 9th

Last Answer : Solution: Given that, Let ABCD be a quadrilateral and its diagonals AC and BD bisect each other at right angle at O. To prove that, The Quadrilateral ABCD is a square. Proof, In ΔAOB and ΔCOD, AO = ... right angle. Thus, from (i), (ii) and (iii) given quadrilateral ABCD is a square. Hence Proved.

Description : Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square. -Maths 9th

Last Answer : We have a quadrilateral ABCD such that angleO is the mid-point of AC and BD. Also AC ⊥ BD. Now, in ΔAOD and ΔAOB, we have AO = AO [Common] OD = OB [ ... i.e. The rhombus ABCD is having one angle equal to 90°. Thus, ABCD is a square.

Description : 3. Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus. -Maths 9th

Last Answer : Solution: Let ABCD be a quadrilateral whose diagonals bisect each other at right angles. Given that, OA = OC OB = OD and ∠AOB = ∠BOC = ∠OCD = ∠ODA = 90° To show that, if the ... a parallelogram. , ABCD is rhombus as it is a parallelogram whose diagonals intersect at right angle. Hence Proved.

Description : 4. Show that the diagonals of a square are equal and bisect each other at right angles. -Maths 9th

Last Answer : Solution: Let ABCD be a square and its diagonals AC and BD intersect each other at O. To show that, AC = BD AO = OC and ∠AOB = 90° Proof, In ΔABC and ΔBAD, AB = BA (Common) ∠ABC = ∠BAD = ... = ∠COB ∠AOB+∠COB = 180° (Linear pair) Thus, ∠AOB = ∠COB = 90° , Diagonals bisect each other at right angles

Description : Show that the diagonals of a square are equal and bisect each other at right angles. -Maths 9th

Last Answer : Proof: (i) In a ΔABC and ΔBAD, AB=AB ( common line) BC=AD ( opppsite sides of a square) ∠ABC=∠BAD ( = 90° ) ΔABC≅ΔBAD( By SAS property) AC=BD ( by CPCT). (ii) In a ΔOAD and ΔOCB, ... ) ( by CPCT ∠AOB+∠AOD=180° (linear pair) 2∠AOB=180° ∠AOB=∠AOD=90° ∴AC and BD bisect each other at right angles.

Description : If the diagonals of a quadrilateral bisect each other at right angles , then name the quadrilateral . -Maths 9th

Last Answer : Quadrilateral will be Rhombus .

Description : If the diagonals of a quadrilateral bisect each other at right angles , then name the quadrilateral . -Maths 9th

Last Answer : Quadrilateral will be Rhombus .

Description : 6. Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other. -Maths 9th

Last Answer : Solution: Let ABCD be a quadrilateral and P, Q, R and S are the mid points of AB, BC, CD and DA respectively. Now, In ΔACD, R and S are the mid points of CD and DA respectively. , ... , PQRS is parallelogram. PR and QS are the diagonals of the parallelogram PQRS. So, they will bisect each other.

Description : If two opposite sides of a cyclic quadrilateral are parallel , then prove that - (a) remaining two sides are equal (b) both the diagonals are equal -Maths 9th

Last Answer : Let ABCD be quadrilateral with ab||cd Join be. In triangle abd and CBD, Angle abd=angle cdb(alternate angles) Anglecbd=angle adb(alternate angles) Bd=bd(common) Abd=~CBD by asa test Ad=BC by cpct Since ad ... c(from 1) Ad =bc(proved above) Triangle adc=~bcd by sas test Ac=bd by cpct Hence proved

Description : If a pair of opposite sides of a cyclic quadrilateral are equal, then prove that its diagonals are also equal. -Maths 9th

Last Answer : Given Let ABCD be a cyclic quadrilateral and AD = BC. Join AC and BD. To prove AC = BD Proof In ΔAOD and ΔBOC, ∠OAD = ∠OBC and ∠ODA = ∠OCB [since, same segments subtends equal angle to the circle] AB = BC [ ... is DOC on both sides, we get ΔAOD+ ΔDOC ≅ ΔBOC + ΔDOC ⇒ ΔADC ≅ ΔBCD AC = BD [by CPCT]

Description : If two opposite sides of a cyclic quadrilateral are parallel , then prove that - (a) remaining two sides are equal (b) both the diagonals are equal -Maths 9th

Last Answer : Let ABCD be quadrilateral with ab||cd Join be. In triangle abd and CBD, Angle abd=angle cdb(alternate angles) Anglecbd=angle adb(alternate angles) Bd=bd(common) Abd=~CBD by asa test Ad=BC by cpct Since ad ... c(from 1) Ad =bc(proved above) Triangle adc=~bcd by sas test Ac=bd by cpct Hence proved

Description : If a pair of opposite sides of a cyclic quadrilateral are equal, then prove that its diagonals are also equal. -Maths 9th

Last Answer : Given Let ABCD be a cyclic quadrilateral and AD = BC. Join AC and BD. To prove AC = BD Proof In ΔAOD and ΔBOC, ∠OAD = ∠OBC and ∠ODA = ∠OCB [since, same segments subtends equal angle to the circle] AB = BC [ ... is DOC on both sides, we get ΔAOD+ ΔDOC ≅ ΔBOC + ΔDOC ⇒ ΔADC ≅ ΔBCD AC = BD [by CPCT]

Description : The diagonals of a quadrilateral ABCD are perpendicular to each other. -Maths 9th

Last Answer : Given: A quadrilateral ABCD whose diagonals AC and BD are perpendicular to each other at O. P,Q,R and S are mid points of side AB, BC, CD and DA respectively are joined are formed quadrilateral PQRS. To ... 90° Thus, PQRS is a parallelogram whose one angle is 90°. ∴ PQRS is a rectangle.

Description : Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. -Maths 9th

Last Answer : Draw AM ⟂ BD and CL ⟂ BD. Now, ar(△APB) × ar(△CPD) = {1/2 PB × AM} × {1/2 DP × CL} = {1/2 PB × CL} × {1/2 DP × AM} ar(△BPC) × ar(△APD) Hence, ar(△APB) × ar(△CPD) = ar(△APD) × ar(△BPC)

Description : The diagonals of a quadrilateral ABCD are perpendicular to each other. -Maths 9th

Last Answer : Given: A quadrilateral ABCD whose diagonals AC and BD are perpendicular to each other at O. P,Q,R and S are mid points of side AB, BC, CD and DA respectively are joined are formed quadrilateral PQRS. To ... 90° Thus, PQRS is a parallelogram whose one angle is 90°. ∴ PQRS is a rectangle.

Description : Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. -Maths 9th

Last Answer : Draw AM ⟂ BD and CL ⟂ BD. Now, ar(△APB) × ar(△CPD) = {1/2 PB × AM} × {1/2 DP × CL} = {1/2 PB × CL} × {1/2 DP × AM} ar(△BPC) × ar(△APD) Hence, ar(△APB) × ar(△CPD) = ar(△APD) × ar(△BPC)

Description : The diagonals of a quadrilateral are equal.Is it neccessary a parallelogram? -Maths 9th

Last Answer : Answer :- No,diagonals of a parallelogram bisect each other but may or may not be equal.

Description : a square is inscribed in an isosceles triangle so that the square and the triangle have one angle common. show that the vertex of the square opposite the vertex of the common angle bisect the hypotenuse. -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : If A, B, C, D are the successive angles of a cyclic quadrilateral, then what is cos A + cos B + cos C + cos D equal to: -Maths 9th

Last Answer : answer:

Description : ABCD is a parallelogram and line segments AX, CY bisect the angles A and C, respectively. -Maths 9th

Last Answer : Since opposite angles are equal in a parallelogram . Therefore , in parallelogram ABCD , we have ∠A = ∠C ⇒ 1 / 2 ∠A = 1 / 2 ∠C ⇒ ∠1 = ∠2 ---- i) [∵ AX and CY are bisectors of ∠A and ∠C ... intersects AX and YC at A and Y such that ∠1 = ∠3 i.e. corresponding angles are equal . ∴ AX | | CY .

Description : ABCD is a parallelogram and line segments AX, CY bisect the angles A and C, respectively. -Maths 9th

Last Answer : Since opposite angles are equal in a parallelogram . Therefore , in parallelogram ABCD , we have ∠A = ∠C ⇒ 1 / 2 ∠A = 1 / 2 ∠C ⇒ ∠1 = ∠2 ---- i) [∵ AX and CY are bisectors of ∠A and ∠C ... intersects AX and YC at A and Y such that ∠1 = ∠3 i.e. corresponding angles are equal . ∴ AX | | CY .

Description : Let ABCD be a parallelogram. P is any point on the side AB. If DP and CP are joined in such a way that they bisect the angles -Maths 9th

Last Answer : answer:

Description : Points P and Q have been taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AP = CQ. Show that AC and PQ bisect each other. -Maths 9th

Last Answer : According to question parallelogram ABCD such that AP = CQ.

Description : Points P and Q have been taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AP = CQ. Show that AC and PQ bisect each other. -Maths 9th

Last Answer : According to question parallelogram ABCD such that AP = CQ.

Description : In Fig. 8.40, points M and N are taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AM = CN. Show that AC and MN bisect each other. -Maths 9th

Last Answer : Solution :-

Description : BD is one of the diagonals of a quadrilateral ABCD. AM and CN are the perpendiculars from A and C respectively on BD . -Maths 9th

Last Answer : We know that area of a triangle = 1/2 × base × altitude ∴ ar(△ABD) = 1/2 × BD × AM and ar(△BCD) = 1/2 BD × CN Now, ar(quad. ABCD) = ar(△ABD) + ar(△BCD) = 1/2 × BD × AM + 1/2 × BD × CN = 1/2 × BD × (AM + CN)

Description : BD is one of the diagonals of a quadrilateral ABCD. AM and CN are the perpendiculars from A and C respectively on BD . -Maths 9th

Last Answer : We know that area of a triangle = 1/2 × base × altitude ∴ ar(△ABD) = 1/2 × BD × AM and ar(△BCD) = 1/2 BD × CN Now, ar(quad. ABCD) = ar(△ABD) + ar(△BCD) = 1/2 × BD × AM + 1/2 × BD × CN = 1/2 × BD × (AM + CN)

Description : If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral,prove that it is a rectangle. -Maths 9th

Last Answer : Solution :- Let, ABCD be a cyclic quadrilateral such that its diagonal AC and BD are the diameters of the circle though the vertices A,B,C and D. As angle in a semi-circle is 900 ∴ ∠ABC = 900 and ∠ADC = 900 ∠DAB = 900 ... Hence, ABCD is a rectangle.

Description : The diagonals AC and BD of a cyclic quadrilateral ABCD intersect at P. Let O be the circumcentre of ∆APB and H be the orthocentre -Maths 9th

Last Answer : answer:

Description : Two parallel lines l and m are intersected by a transversal p (see Fig. 8.46). Show that the quadrilateral formed by the bisectors of interior angles is a rectangle. -Maths 9th

Last Answer : Solution :-

Description : If the diagonals of a parallelogram are equal, then show that it is a rectangle. -Maths 9th

Last Answer : Given : A parallelogram ABCD , in which AC = BD TO Prove : ABCD is a rectangle . Proof : In △ABC and △ABD AB = AB [common] AC = BD [given] BC = AD [opp . sides of a | | gm] ⇒ △ABC ≅ △BAD [ ... ∵ ∠ABC = ∠BAD] ⇒ 2∠ABC = 180° ⇒ ∠ABC = 1 /2 180° = 90° Hence, parallelogram ABCD is a rectangle.

Description : If the diagonals of a parallelogram are equal, then show that it is a rectangle. -Maths 9th

Last Answer : Given : A parallelogram ABCD , in which AC = BD TO Prove : ABCD is a rectangle . Proof : In △ABC and △ABD AB = AB [common] AC = BD [given] BC = AD [opp . sides of a | | gm] ⇒ △ABC ≅ △BAD [ ... ∵ ∠ABC = ∠BAD] ⇒ 2∠ABC = 180° ⇒ ∠ABC = 1 /2 180° = 90° Hence, parallelogram ABCD is a rectangle.

Description : All the angles of a quadrilateral are equal. What special name is given to this quadrilateral ? -Maths 9th

Last Answer : We know that, sum of all angles in a quadrilateral is 360°. If ABCD is a quadrilateral, ∠A+ ∠B+ ∠C + ∠D = 360° (i) But it is given all angles are equal. ∠A = ∠B = ∠C = ∠D From Eq. (i ... ⇒ 4 ∠A = 360° ∠A = 90° So, all angles of a quadrilateral are 90°. Hence, given quadrilateral is a rectangle.

Description : Opposite angles of a quadrilateral ABCD are equal. If AB = 4 cm, determine CD. -Maths 9th

Last Answer : Given, opposite angles of a quadrilateral are equal. So, ABCD is a parallelogram and we know that, in a parallelogram opposite sides are also equal. ∴ CD = AB = 4cm

Description : All the angles of a quadrilateral are equal. What special name is given to this quadrilateral ? -Maths 9th

Last Answer : We know that, sum of all angles in a quadrilateral is 360°. If ABCD is a quadrilateral, ∠A+ ∠B+ ∠C + ∠D = 360° (i) But it is given all angles are equal. ∠A = ∠B = ∠C = ∠D From Eq. (i ... ⇒ 4 ∠A = 360° ∠A = 90° So, all angles of a quadrilateral are 90°. Hence, given quadrilateral is a rectangle.

Description : Opposite angles of a quadrilateral ABCD are equal. If AB = 4 cm, determine CD. -Maths 9th

Last Answer : Given, opposite angles of a quadrilateral are equal. So, ABCD is a parallelogram and we know that, in a parallelogram opposite sides are also equal. ∴ CD = AB = 4cm

Description : Three Angles of a quadrilateral ABCD are equal.Is it a parallelogram? -Maths 9th

Last Answer : Solution :-

Description : Can all the angles of a quadrilateral be right angles? Give reason for your answer. -Maths 9th

Last Answer : Yes, all the angles of a quadrilateral can be right angles. In this case, the quadrilateral becomes rectangle or square.

Description : Can all the angles of a quadrilateral be right angles? Give reason for your answer. -Maths 9th

Last Answer : Yes, all the angles of a quadrilateral can be right angles. In this case, the quadrilateral becomes rectangle or square.

Description : Can all the angles of a quadrilateral be right angles? Give reason for your answer. -Maths 9th

Last Answer : Solution :-

Description : If angles A, B,C and D of the quadrilateral ABCD, taken in order are in the ratio 3 :7:6:4, then ABCD is a -Maths 9th

Last Answer : (c) Given, ratio of angles of quadrilateral ABCD is 3 : 7 : 6 : 4. Let angles of quadrilateral ABCD be 3x, 7x, 6x and 4x, respectively. We know that, sum of all angles of a quadrilateral is 360°. 3x + 7x + 6x + 4x = 360° => 20x = 360° => x=360°/20° = 18°

Description : If angles A, B,C and D of the quadrilateral ABCD, taken in order are in the ratio 3 :7:6:4, then ABCD is a -Maths 9th

Last Answer : (c) Given, ratio of angles of quadrilateral ABCD is 3 : 7 : 6 : 4. Let angles of quadrilateral ABCD be 3x, 7x, 6x and 4x, respectively. We know that, sum of all angles of a quadrilateral is 360°. 3x + 7x + 6x + 4x = 360° => 20x = 360° => x=360°/20° = 18°

Description : Proof to show that the quadrilateral formed by joining the midpoints of a square is a square. -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : Show that the quadrilateral formed by joining the consecutive sides of a square is also a square. -Maths 9th

Last Answer : According to question quadrilateral formed by joining the consecutive sides of a square is also a square.

Description : Proof to show that the quadrilateral formed by joining the midpoints of a square is a square. -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : Show that the quadrilateral formed by joining the consecutive sides of a square is also a square. -Maths 9th

Last Answer : According to question quadrilateral formed by joining the consecutive sides of a square is also a square.

Description : In the given figure, equal chords AB and CD of a circle with centre O cut at right angles at E. If M and N are the mid-points of AB and CD respectively, prove that OMEN is a square. -Maths 9th

Last Answer : Join OE. In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre] ∠OME = ∠ONE = 90° OE =OE [common sides] ∠OME ≅ ∠ONE [by SAS congruency] ⇒ ME = NE [by CPCT] In quadrilateral OMEN, ... =ON , ME = NE and ∠OME = ∠ONE = ∠MEN = ∠MON = 90° Hence, OMEN is a square. Hence proved.

Description : In the given figure, equal chords AB and CD of a circle with centre O cut at right angles at E. If M and N are the mid-points of AB and CD respectively, prove that OMEN is a square. -Maths 9th

Last Answer : Join OE. In ΔOME and ΔONE, OM =ON [equal chords are equidistant from the centre] ∠OME = ∠ONE = 90° OE =OE [common sides] ∠OME ≅ ∠ONE [by SAS congruency] ⇒ ME = NE [by CPCT] In quadrilateral OMEN, ... =ON , ME = NE and ∠OME = ∠ONE = ∠MEN = ∠MON = 90° Hence, OMEN is a square. Hence proved.

Description : In a trapezium ABCD, AB is parallel to CD and the diagonals intersect each other at O. In this case, the ratio OA/OC is equal to: -Maths 9th

Last Answer : answer:

Description : AC and BD are chords of a circle that bisect each other. Prove that AC and BD are diameters and ABCD is a rectangle. -Maths 9th

Last Answer : Solution :- Let AC and BD bisect each other at point 0. Then, OA = OC and OB = OD In triangles AOB and COD, we have OA = OC OB = OD and ∠ AOB = ∠ COD (Vertically opposite angles) ∴ △ AOB ... ∠ADC Also, ∠BAD = 90° = ∠BCD Also, AB = CD and BC = DA (Proved above) Hence, ABCD is a rectangle.