BD is one of the diagonals of a quadrilateral ABCD. AM and CN are the perpendiculars from A and C respectively on BD . -Maths 9th

1 Answer

Answer :

We know that area of a triangle = 1/2 × base × altitude  ∴ ar(△ABD) = 1/2  × BD × AM and ar(△BCD) = 1/2 BD  × CN Now, ar(quad. ABCD) = ar(△ABD) + ar(△BCD)    = 1/2  × BD ×  AM + 1/2 × BD × CN = 1/2  × BD ×  (AM + CN)   

Related questions

Description : BD is one of the diagonals of a quadrilateral ABCD. AM and CN are the perpendiculars from A and C respectively on BD . -Maths 9th

Last Answer : We know that area of a triangle = 1/2 × base × altitude ∴ ar(△ABD) = 1/2 × BD × AM and ar(△BCD) = 1/2 BD × CN Now, ar(quad. ABCD) = ar(△ABD) + ar(△BCD) = 1/2 × BD × AM + 1/2 × BD × CN = 1/2 × BD × (AM + CN)

Description : In Fig.8.38, AM and CN are perpendiculars to the diagonal BD of a paralelogram ABCD.Prove that AM = CN. -Maths 9th

Last Answer : Solution :-

Description : Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. -Maths 9th

Last Answer : Draw AM ⟂ BD and CL ⟂ BD. Now, ar(△APB) × ar(△CPD) = {1/2 PB × AM} × {1/2 DP × CL} = {1/2 PB × CL} × {1/2 DP × AM} ar(△BPC) × ar(△APD) Hence, ar(△APB) × ar(△CPD) = ar(△APD) × ar(△BPC)

Description : Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. -Maths 9th

Last Answer : Draw AM ⟂ BD and CL ⟂ BD. Now, ar(△APB) × ar(△CPD) = {1/2 PB × AM} × {1/2 DP × CL} = {1/2 PB × CL} × {1/2 DP × AM} ar(△BPC) × ar(△APD) Hence, ar(△APB) × ar(△CPD) = ar(△APD) × ar(△BPC)

Description : The diagonals AC and BD of a cyclic quadrilateral ABCD intersect at P. Let O be the circumcentre of ∆APB and H be the orthocentre -Maths 9th

Last Answer : answer:

Description : ABCD is a parallelogram. The diagonals AC and BD intersect at the point O. If E, F, G and H are the mid-points of AO, DO, CO and BO respectively -Maths 9th

Last Answer : answer:

Description : P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. -Maths 9th

Last Answer : Given In a quadrilateral ABCD, P, Q, R and S are the mid-points of sides AB, BC, CD and DA, respectively. Also, AC = BD To prove PQRS is a rhombus.

Description : P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. -Maths 9th

Last Answer : Given In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Also, AC = BD and AC ⊥ BD. To prove PQRS is a square. Proof Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

Description : P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD in which AC = BD. -Maths 9th

Last Answer : Given In a quadrilateral ABCD, P, Q, R and S are the mid-points of sides AB, BC, CD and DA, respectively. Also, AC = BD To prove PQRS is a rhombus.

Description : P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and AC ⊥ BD. Prove that PQRS is a square. -Maths 9th

Last Answer : Given In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Also, AC = BD and AC ⊥ BD. To prove PQRS is a square. Proof Now, in ΔADC, S and R are the mid-points of the sides AD and DC respectively, then by mid-point theorem,

Description : Let ABCD be a quadrilateral. Let X and Y be the mid-points of AC and BD respectively and the lines through X and Y respectively -Maths 9th

Last Answer : answer:

Description : ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD (see Fig. 8.21). Show that (i) ΔAPB ≅ ΔCQD (ii) AP = CQ -Maths 9th

Last Answer : Q Solution: (i) In ΔAPB and ΔCQD, ∠ABP = ∠CDQ (Alternate interior angles) ∠APB = ∠CQD (= 90o as AP and CQ are perpendiculars) AB = CD (ABCD is a parallelogram) , ΔAPB ≅ ΔCQD [AAS congruency] (ii) As ΔAPB ≅ ΔCQD. , AP = CQ [CPCT]

Description : ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD . -Maths 9th

Last Answer : In gm ABCD , AP and CQ are perpendicular from the vertices A and C on diagonal BD. Show that : (i) AAPB ≅ ACQD (ii) AP = CQ .

Description : ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD . -Maths 9th

Last Answer : In gm ABCD , AP and CQ are perpendicular from the vertices A and C on diagonal BD. Show that : (i) AAPB ≅ ACQD (ii) AP = CQ .

Description : In trapezium ABCD, AB|| DC and diagonals AC and BD intersect at O. If area of triangle AOD is 30cm square , find the area of triangle BOC -Maths 9th

Last Answer : In the given figure: Area of triangle ADC = Area of triangle BCD (Triangles on the same and parallel) Now subtract the area of triangle DOC from both of them so... (Area of triangle ADC - Area of ... => Area of triangle AOD = Area of triangle BOC Hence the area of triangle BOC is 30 cm square.

Description : The diagonals AC and BD of parallelogram ABCD intersect at the point O. -Maths 9th

Last Answer : ABCD is a parallelogram . ∴ AD | | BC ⇒ ∠ACB = ∠DAC = 34° Now, ∠AOB is an exterior angle of △BOC ∴ ∠OBC + OCB = ∠AOB [∵ ext ∠ = sum of two int. opp. ∠S] ⇒ ∠OBC + 34° = 75° ⇒ ∠OBC = 75° - 34° = 41° or ∠DBC = 41°

Description : The diagonals AC and BD of a parallelogram ABCD intersect each other at the point 0. -Maths 9th

Last Answer : According to question parallelogram ABCD intersect each other at the point 0. If ∠DAC = 32° and ∠AOB = 70°.

Description : Diagonals AC and BD of a parallelogram ABCD intersect each other at O. -Maths 9th

Last Answer : According to parallelogram ABCD intersect each other at O. If OA = 3 cm and OD = 2 cm, determine the lengths of AC and BD.

Description : P and O are points on opposite sides AD and BC of a parallelogram ABCD such that PQ passes through the point of intersection O of its diagonals AC and BD. -Maths 9th

Last Answer : According to question PQ passes through the point of intersection O of its diagonals AC and BD.

Description : In trapezium ABCD, AB|| DC and diagonals AC and BD intersect at O. If area of triangle AOD is 30cm square , find the area of triangle BOC -Maths 9th

Last Answer : In the given figure: Area of triangle ADC = Area of triangle BCD (Triangles on the same and parallel) Now subtract the area of triangle DOC from both of them so... (Area of triangle ADC - Area of ... => Area of triangle AOD = Area of triangle BOC Hence the area of triangle BOC is 30 cm square.

Description : The diagonals AC and BD of parallelogram ABCD intersect at the point O. -Maths 9th

Last Answer : ABCD is a parallelogram . ∴ AD | | BC ⇒ ∠ACB = ∠DAC = 34° Now, ∠AOB is an exterior angle of △BOC ∴ ∠OBC + OCB = ∠AOB [∵ ext ∠ = sum of two int. opp. ∠S] ⇒ ∠OBC + 34° = 75° ⇒ ∠OBC = 75° - 34° = 41° or ∠DBC = 41°

Description : The diagonals AC and BD of a parallelogram ABCD intersect each other at the point 0. -Maths 9th

Last Answer : According to question parallelogram ABCD intersect each other at the point 0. If ∠DAC = 32° and ∠AOB = 70°.

Description : Diagonals AC and BD of a parallelogram ABCD intersect each other at O. -Maths 9th

Last Answer : According to parallelogram ABCD intersect each other at O. If OA = 3 cm and OD = 2 cm, determine the lengths of AC and BD.

Description : P and O are points on opposite sides AD and BC of a parallelogram ABCD such that PQ passes through the point of intersection O of its diagonals AC and BD. -Maths 9th

Last Answer : According to question PQ passes through the point of intersection O of its diagonals AC and BD.

Description : abcd is a rectangle and bd is one of its diagonals if area of triangle abd is 8cm^2 find are of triangle bcd -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : A trapezium ABCD in which AB || CD is inscribed in a circle with centre O. Suppose the diagonals AC and BD of the trapezium intersect at M -Maths 9th

Last Answer : answer:

Description : The diagonals of a quadrilateral ABCD are perpendicular to each other. -Maths 9th

Last Answer : Given: A quadrilateral ABCD whose diagonals AC and BD are perpendicular to each other at O. P,Q,R and S are mid points of side AB, BC, CD and DA respectively are joined are formed quadrilateral PQRS. To ... 90° Thus, PQRS is a parallelogram whose one angle is 90°. ∴ PQRS is a rectangle.

Description : The diagonals of a quadrilateral ABCD are perpendicular to each other. -Maths 9th

Last Answer : Given: A quadrilateral ABCD whose diagonals AC and BD are perpendicular to each other at O. P,Q,R and S are mid points of side AB, BC, CD and DA respectively are joined are formed quadrilateral PQRS. To ... 90° Thus, PQRS is a parallelogram whose one angle is 90°. ∴ PQRS is a rectangle.

Description : Show that in a quadrilateral ABCD,AB + BC + CD + DA > AC + BD. -Maths 9th

Last Answer : Solution :-

Description : ABCD is a cyclic quadrilateral such that AC ⊥ BD. AC meet BD at E. Prove that EA^2 + EB^2 + EC^2 + ED^2 = 4R^2, -Maths 9th

Last Answer : answer:

Description : In Fig. 8.40, points M and N are taken on opposite sides AB and CD, respectively of a parallelogram ABCD such that AM = CN. Show that AC and MN bisect each other. -Maths 9th

Last Answer : Solution :-

Description : 5. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see Fig. 8.31). Show that the line segments AF and EC trisect the diagonal BD. -Maths 9th

Last Answer : . Solution: Given that, ABCD is a parallelogram. E and F are the mid-points of sides AB and CD respectively. To show, AF and EC trisect the diagonal BD. Proof, ABCD is a parallelogram , AB || CD also, ... (i), DP = PQ = BQ Hence, the line segments AF and EC trisect the diagonal BD. Hence Proved.

Description : The middle points of the parallel sides AB and CD of a parallelogram ABCD are P and Q respectively. If AQ and CP divide the diagonal BD -Maths 9th

Last Answer : answer:

Description : ABCD is a trapezium in which AB || DC and AD = BC. If P, Q, R and S be respectively the mid-points of BA, BD, CD and CA, then PQRS is a -Maths 9th

Last Answer : Here is your First of all we will draw a quadrilateral ABCD with AD = BC and join AC, BD, P,Q,R,S are the mid points of AB, AC, CD and BD respectively. In the triangle ABC, P and Q are mid points of AB and AC respectively. All sides are equal so PQRS is a Rhombus.

Description : 3. ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus. -Maths 9th

Last Answer : Solution: Given in the question, ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Construction, Join AC and BD. To Prove, PQRS is a rhombus. Proof: In ΔABC P and Q ... (ii), (iii), (iv) and (v), PQ = QR = SR = PS So, PQRS is a rhombus. Hence Proved

Description : 2. ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle. -Maths 9th

Last Answer : Solution: Given in the question, ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. To Prove, PQRS is a rectangle. Construction, Join AC and BD. Proof: In ΔDRS and ... , In PQRS, RS = PQ and RQ = SP from (i) and (ii) ∠Q = 90° , PQRS is a rectangle.

Description : The sides of a quadrilateral ABCD are 6 cm, 8 cm, 12 cm and 14 cm (taken in order), respectively and the angle between the first two sides is a right angle. -Maths 9th

Last Answer : Given ABCD is a quadrilateral having sides AB=6cm, BC=8cm, CD=12cm and DA=14 cm. Now. Join AC. We have, ABC is a right angled triangle at B. Now, AC2=AB2+BC2 [by Pythagoras theorem]Now, AC2=AB2+BC2 ... =24(1+6-√)cm2=24+246=24(1+6)cm2 Hence, the area of quadrilateral is 241+6-√−−−−−−√cm2241+6cm2 .

Description : The side of a quadrilateral ABCD are 6cm,12cm,8cm,12cm,4cm (taken in oder) respectively and the angle between the 1st two side is a right angle. Find area of tiresome by herons fourmula -Maths 9th

Last Answer : Given ABCD is a quadrilateral having sides AB=6cm, BC=8cm, CD=12cm and DA=14 cm. Now. Join AC. We have, ABC is a right angled triangle at B. Now, AC2 =AB2 +BC2 [by Pythagoras theorem] Now, AC2=AB2 ... 1+6-√)cm2 =24+246=24(1+6)cm2 Hence, the area of quadrilateral is 241+6-√−−−−−−√cm2 241+6cm2 .

Description : The sides of a quadrilateral ABCD are 6 cm, 8 cm, 12 cm and 14 cm (taken in order), respectively and the angle between the first two sides is a right angle. -Maths 9th

Last Answer : Given ABCD is a quadrilateral having sides AB = 6 cm, BC = 8 cm, CD = 12 cm and DA = 14 cm. Now, join AC.

Description : The side of a quadrilateral ABCD are 6cm,12cm,8cm,12cm,4cm (taken in oder) respectively and the angle between the 1st two side is a right angle. Find area of tiresome by herons fourmula -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : ABCD is a rectangle and p q r s are the mid points of the side AB BC CD AND DA respectively. Show that the quadrilateral PQRS is a rhombus -Maths 9th

Last Answer : This answer was deleted by our moderators...

Description : If ABCD is a rectangle and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively, then quadrilateral PQRS is a rhombus. -Maths 9th

Last Answer : Here, we are joining A and C. In ΔABC P is the mid point of AB Q is the mid point of BC PQ∣∣AC [Line segments joining the mid points of two sides of a triangle is parallel to AC(third side) and ... RS=PS=RQ[All sides are equal] ∴ PQRS is a parallelogram with all sides equal ∴ So PQRS is a rhombus.

Description : ABCD is a square. P, Q, R, S are the mid-points of AB, BC, CD and DA respectively. By joining AR, BS, CP, DQ, we get a quadrilateral which is a -Maths 9th

Last Answer : According to the given statement, the figure will be a shown alongside; using mid-point theorem: In △ABC,PQ∥AC and PQ=21 AC .......(1) In △ADC,SR∥AC and SR=21 AC .... ... are perpendicular to each other) ∴PQ⊥QR(angle between two lines = angle between their parallels) Hence PQRS is a rectangle.

Description : 5. Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square. -Maths 9th

Last Answer : Solution: Given that, Let ABCD be a quadrilateral and its diagonals AC and BD bisect each other at right angle at O. To prove that, The Quadrilateral ABCD is a square. Proof, In ΔAOB and ΔCOD, AO = ... right angle. Thus, from (i), (ii) and (iii) given quadrilateral ABCD is a square. Hence Proved.

Description : 3. Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus. -Maths 9th

Last Answer : Solution: Let ABCD be a quadrilateral whose diagonals bisect each other at right angles. Given that, OA = OC OB = OD and ∠AOB = ∠BOC = ∠OCD = ∠ODA = 90° To show that, if the ... a parallelogram. , ABCD is rhombus as it is a parallelogram whose diagonals intersect at right angle. Hence Proved.

Description : If the diagonals of a quadrilateral bisect each other at right angles , then name the quadrilateral . -Maths 9th

Last Answer : Quadrilateral will be Rhombus .

Description : If two opposite sides of a cyclic quadrilateral are parallel , then prove that - (a) remaining two sides are equal (b) both the diagonals are equal -Maths 9th

Last Answer : Let ABCD be quadrilateral with ab||cd Join be. In triangle abd and CBD, Angle abd=angle cdb(alternate angles) Anglecbd=angle adb(alternate angles) Bd=bd(common) Abd=~CBD by asa test Ad=BC by cpct Since ad ... c(from 1) Ad =bc(proved above) Triangle adc=~bcd by sas test Ac=bd by cpct Hence proved

Description : If a pair of opposite sides of a cyclic quadrilateral are equal, then prove that its diagonals are also equal. -Maths 9th

Last Answer : Given Let ABCD be a cyclic quadrilateral and AD = BC. Join AC and BD. To prove AC = BD Proof In ΔAOD and ΔBOC, ∠OAD = ∠OBC and ∠ODA = ∠OCB [since, same segments subtends equal angle to the circle] AB = BC [ ... is DOC on both sides, we get ΔAOD+ ΔDOC ≅ ΔBOC + ΔDOC ⇒ ΔADC ≅ ΔBCD AC = BD [by CPCT]

Description : If the diagonals of a quadrilateral bisect each other at right angles , then name the quadrilateral . -Maths 9th

Last Answer : Quadrilateral will be Rhombus .

Description : If two opposite sides of a cyclic quadrilateral are parallel , then prove that - (a) remaining two sides are equal (b) both the diagonals are equal -Maths 9th

Last Answer : Let ABCD be quadrilateral with ab||cd Join be. In triangle abd and CBD, Angle abd=angle cdb(alternate angles) Anglecbd=angle adb(alternate angles) Bd=bd(common) Abd=~CBD by asa test Ad=BC by cpct Since ad ... c(from 1) Ad =bc(proved above) Triangle adc=~bcd by sas test Ac=bd by cpct Hence proved