The diagonals of a parallelogram ABCD intersect at a point O. -Maths 9th

1 Answer

Answer :

According to question PQ divides the parallelogram into two parts of equal area.

Related questions

Description : The diagonals AC and BD of parallelogram ABCD intersect at the point O. -Maths 9th

Last Answer : ABCD is a parallelogram . ∴ AD | | BC ⇒ ∠ACB = ∠DAC = 34° Now, ∠AOB is an exterior angle of △BOC ∴ ∠OBC + OCB = ∠AOB [∵ ext ∠ = sum of two int. opp. ∠S] ⇒ ∠OBC + 34° = 75° ⇒ ∠OBC = 75° - 34° = 41° or ∠DBC = 41°

Description : ABCD is a parallelogram whose diagonals intersect at O. If P is any point on BO, prove that : -Maths 9th

Last Answer : (i) Since diagonals of a parallelogram bisect each other. ∴ O is the mid - point AC as well as BD. In △ADC, OD is a median. ∴ ar(△ADO) = ar(△CDO) [∵ A median of a triangle divide it into two triangles of equal ... and (i) , we have ar(△AOB) - ar(△AOP) = ar(△BOC) - ar(△COP) ⇒ ar(△ABP) = (△CBP)

Description : The diagonals AC and BD of parallelogram ABCD intersect at the point O. -Maths 9th

Last Answer : ABCD is a parallelogram . ∴ AD | | BC ⇒ ∠ACB = ∠DAC = 34° Now, ∠AOB is an exterior angle of △BOC ∴ ∠OBC + OCB = ∠AOB [∵ ext ∠ = sum of two int. opp. ∠S] ⇒ ∠OBC + 34° = 75° ⇒ ∠OBC = 75° - 34° = 41° or ∠DBC = 41°

Description : ABCD is a parallelogram whose diagonals intersect at O. If P is any point on BO, prove that : -Maths 9th

Last Answer : (i) Since diagonals of a parallelogram bisect each other. ∴ O is the mid - point AC as well as BD. In △ADC, OD is a median. ∴ ar(△ADO) = ar(△CDO) [∵ A median of a triangle divide it into two triangles of equal ... and (i) , we have ar(△AOB) - ar(△AOP) = ar(△BOC) - ar(△COP) ⇒ ar(△ABP) = (△CBP)

Description : The diagonals of a parallelogram ABCD intersect at a point O. -Maths 9th

Last Answer : According to question PQ divides the parallelogram into two parts of equal area.

Description : Diagonals AC and BC of parallelogram ABCD Intersect at point O. Angle BOC=90° and BDC=50°.find angle OAB. -Maths 9th

Last Answer : NEED ANSWER

Description : Diagonals AC and BC of parallelogram ABCD Intersect at point O. Angle BOC=90° and BDC=50°.find angle OAB. -Maths 9th

Last Answer : Its given ABCD is a IIgram and AC and BD are its diagonals intersecting at point O. . Given : angle BOC = 900 angle BDC = 500 To find : angle OAB Answer : i) ...

Description : ABCD is a parallelogram. The diagonals AC and BD intersect at the point O. If E, F, G and H are the mid-points of AO, DO, CO and BO respectively -Maths 9th

Last Answer : answer:

Description : Diagonals AC and BD of a parallelogram ABCD intersect each other at O. -Maths 9th

Last Answer : According to parallelogram ABCD intersect each other at O. If OA = 3 cm and OD = 2 cm, determine the lengths of AC and BD.

Description : Diagonals AC and BD of a parallelogram ABCD intersect each other at O. -Maths 9th

Last Answer : According to parallelogram ABCD intersect each other at O. If OA = 3 cm and OD = 2 cm, determine the lengths of AC and BD.

Description : The diagonals AC and BD of a parallelogram ABCD intersect each other at the point 0. -Maths 9th

Last Answer : According to question parallelogram ABCD intersect each other at the point 0. If ∠DAC = 32° and ∠AOB = 70°.

Description : The diagonals AC and BD of a parallelogram ABCD intersect each other at the point 0. -Maths 9th

Last Answer : According to question parallelogram ABCD intersect each other at the point 0. If ∠DAC = 32° and ∠AOB = 70°.

Description : ABCD is a parallelogram and O is the point of intersection of its diagonals. -Maths 9th

Last Answer : Here, ABCD is a parallelogram in which its diagonals AC and BD intersect each other in O. ∴ O is the mid - point of AC as well as BD. Now, in △ADB , AO is its median ∴ ar(△ADB) = 2 ar(△AOD) [ ∵ median ... AB and lie between same parallel AB and CD . ∴ ar(ABCD) = 2 ar(△ADB) = 2 8 = 16 cm2

Description : P and O are points on opposite sides AD and BC of a parallelogram ABCD such that PQ passes through the point of intersection O of its diagonals AC and BD. -Maths 9th

Last Answer : According to question PQ passes through the point of intersection O of its diagonals AC and BD.

Description : ABCD is a parallelogram and O is the point of intersection of its diagonals. -Maths 9th

Last Answer : Here, ABCD is a parallelogram in which its diagonals AC and BD intersect each other in O. ∴ O is the mid - point of AC as well as BD. Now, in △ADB , AO is its median ∴ ar(△ADB) = 2 ar(△AOD) [ ∵ median ... AB and lie between same parallel AB and CD . ∴ ar(ABCD) = 2 ar(△ADB) = 2 8 = 16 cm2

Description : P and O are points on opposite sides AD and BC of a parallelogram ABCD such that PQ passes through the point of intersection O of its diagonals AC and BD. -Maths 9th

Last Answer : According to question PQ passes through the point of intersection O of its diagonals AC and BD.

Description : In trapezium ABCD, AB|| DC and diagonals AC and BD intersect at O. If area of triangle AOD is 30cm square , find the area of triangle BOC -Maths 9th

Last Answer : In the given figure: Area of triangle ADC = Area of triangle BCD (Triangles on the same and parallel) Now subtract the area of triangle DOC from both of them so... (Area of triangle ADC - Area of ... => Area of triangle AOD = Area of triangle BOC Hence the area of triangle BOC is 30 cm square.

Description : In trapezium ABCD, AB|| DC and diagonals AC and BD intersect at O. If area of triangle AOD is 30cm square , find the area of triangle BOC -Maths 9th

Last Answer : In the given figure: Area of triangle ADC = Area of triangle BCD (Triangles on the same and parallel) Now subtract the area of triangle DOC from both of them so... (Area of triangle ADC - Area of ... => Area of triangle AOD = Area of triangle BOC Hence the area of triangle BOC is 30 cm square.

Description : The diagonals AC and BD of a cyclic quadrilateral ABCD intersect at P. Let O be the circumcentre of ∆APB and H be the orthocentre -Maths 9th

Last Answer : answer:

Description : In a trapezium ABCD, AB is parallel to CD and the diagonals intersect each other at O. In this case, the ratio OA/OC is equal to: -Maths 9th

Last Answer : answer:

Description : A trapezium ABCD in which AB || CD is inscribed in a circle with centre O. Suppose the diagonals AC and BD of the trapezium intersect at M -Maths 9th

Last Answer : answer:

Description : ABCD is a trapezium with AB and CD as parallel sides. The diagonals intersect at O. The area of the triangle ABO is p and that of triangle CDO is q. -Maths 9th

Last Answer : answer:

Description : Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. -Maths 9th

Last Answer : Draw AM ⟂ BD and CL ⟂ BD. Now, ar(△APB) × ar(△CPD) = {1/2 PB × AM} × {1/2 DP × CL} = {1/2 PB × CL} × {1/2 DP × AM} ar(△BPC) × ar(△APD) Hence, ar(△APB) × ar(△CPD) = ar(△APD) × ar(△BPC)

Description : Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. -Maths 9th

Last Answer : Draw AM ⟂ BD and CL ⟂ BD. Now, ar(△APB) × ar(△CPD) = {1/2 PB × AM} × {1/2 DP × CL} = {1/2 PB × CL} × {1/2 DP × AM} ar(△BPC) × ar(△APD) Hence, ar(△APB) × ar(△CPD) = ar(△APD) × ar(△BPC)

Description : ABCD is a parallelogram.The circle through A,B and C intersect CD (produce if necessary) at E.Prove that AE = AD. -Maths 9th

Last Answer : Solution :- ∠ABC + ∠AEC = 1800 (Opposite angles of cyclic quadrilateral) .. . (i) ∠ADE + ∠ADC = 1800 (Linear pair) But ∠ADC = ∠ABC (Opposite angles of ||gm) ∴ ∠ADE + ∠ABC = 1800 .. (ii) ... ∠ABC + ∠AEC = ∠ADE + ∠ABC ⇒ ∠AEC = ∠ADE ⇒ AD = AE (sides opposite to equal angles)

Description : ABCD is a square. Another square EFGH with the same area is placed on the square ABCD such that the point of intersection of diagonals of square -Maths 9th

Last Answer : (a) 32 (2 - √2)As is seen in the given figure, the sides of one square are parallel to the diagonals of another square. Also, square ABCD and EFGH have same area.⇒ Sides of square ABCD and square EFGH are 4 cm each. Let ... four Δs outside ABCD= 16 +16 (3 -2√2)= 16 + (4 - 2√2) = 32 (2 - √2) cm2.

Description : P is the mid - point of side AB of a parallelogram ABCD. A line through B parallel to PD meets DC at Q and AD produced at R (see figure). -Maths 9th

Last Answer : (i) In △ARB,P is the mid point of AB and PD || BR. ∴ D is a mid - point of AR [converse of mid - point theorem] ∴ AR = 2AD But BC = AD [opp sides of ||gm ABCD] Thus, AR = 2BC (ii) ∴ ABCD is a ... a mid - point of AR and DQ || AB ∴ Q is a mid point of BR [converse of mid - point theorem] ⇒ BR = 2BQ

Description : In the given figure, ABCD is a parallelogram and L is the mid - point of DC. -Maths 9th

Last Answer : In ||gm ABCD, AC is the diagonal ∴ ar(△ABC) = ar(△ADC) = 1/2 ar ||gm ABCD) In△ADC, AL is the median ∴ ar(△ADL) = ar(△ACL)= 1/2 ar(△ADC) = 1/4 ar (||gm ABCD) Now, ar(quad.ABCL) = ar(△ABC) + ar(△ACL) = 3/4 ar ... ar(||gm ABCD) = 96 cm2 ∴ ar(△ADC) = 1/2 ar(||gm ABCD) = 1/2 96 = 48 cm2

Description : ABCD is a parallelogram and BC is produced to a point Q such that AD = CQ. -Maths 9th

Last Answer : In ||gm ABCD , ar(△APC) = ar(△BCP) ---i) [∵ triangles on the same base and between the same parallels have equal area] Similarly, ar( △ADQ) = ar(△ADC) ---ii) Now, ar(△ADQ) - ar(△ADP) = ar(△ADC) - ar(△ADP) ... ) From (i) and (iii) , we have ar(△BCP) = ar(△DPQ) or ar( △BPC) = ar(△DPQ)

Description : The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q, then parallelogram PBQR is completed (see figure). -Maths 9th

Last Answer : Join AC and QP, also it is given that AQ || CP ∴ △ACQ and △APQ are on the same base AQ and lie between the same parallels AQ || CP. ∴ ar(△ACQ) = ar(△APQ) or ar(△ABC) + ar(△ABQ) = ar(△BPQ) + ar(△ABQ) or ar(△ABC) = ar( △BPQ) or 1/2 ar(||gm ABCD) = 1/2 ar(||gm PBQR) or ar(||gm ABCD) = ar(||gm PBQR)

Description : P is the mid-point of the side CD of a parallelogram ABCD. -Maths 9th

Last Answer : According to question prove that DA = AR and CQ = QR.

Description : A point E is taken on the side BC of a parallelogram ABCD. -Maths 9th

Last Answer : Given ABCD is a parallelogram and E is a point on BC. AE and DC are produced to meet at F. AB||CD anti BC||AD ,..(i)

Description : P is the mid - point of side AB of a parallelogram ABCD. A line through B parallel to PD meets DC at Q and AD produced at R (see figure). -Maths 9th

Last Answer : (i) In △ARB,P is the mid point of AB and PD || BR. ∴ D is a mid - point of AR [converse of mid - point theorem] ∴ AR = 2AD But BC = AD [opp sides of ||gm ABCD] Thus, AR = 2BC (ii) ∴ ABCD is a ... a mid - point of AR and DQ || AB ∴ Q is a mid point of BR [converse of mid - point theorem] ⇒ BR = 2BQ

Description : In the given figure, ABCD is a parallelogram and L is the mid - point of DC. -Maths 9th

Last Answer : In ||gm ABCD, AC is the diagonal ∴ ar(△ABC) = ar(△ADC) = 1/2 ar ||gm ABCD) In△ADC, AL is the median ∴ ar(△ADL) = ar(△ACL)= 1/2 ar(△ADC) = 1/4 ar (||gm ABCD) Now, ar(quad.ABCL) = ar(△ABC) + ar(△ACL) = 3/4 ar ... ar(||gm ABCD) = 96 cm2 ∴ ar(△ADC) = 1/2 ar(||gm ABCD) = 1/2 96 = 48 cm2

Description : ABCD is a parallelogram and BC is produced to a point Q such that AD = CQ. -Maths 9th

Last Answer : In ||gm ABCD , ar(△APC) = ar(△BCP) ---i) [∵ triangles on the same base and between the same parallels have equal area] Similarly, ar( △ADQ) = ar(△ADC) ---ii) Now, ar(△ADQ) - ar(△ADP) = ar(△ADC) - ar(△ADP) ... ) From (i) and (iii) , we have ar(△BCP) = ar(△DPQ) or ar( △BPC) = ar(△DPQ)

Description : The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q, then parallelogram PBQR is completed (see figure). -Maths 9th

Last Answer : Join AC and QP, also it is given that AQ || CP ∴ △ACQ and △APQ are on the same base AQ and lie between the same parallels AQ || CP. ∴ ar(△ACQ) = ar(△APQ) or ar(△ABC) + ar(△ABQ) = ar(△BPQ) + ar(△ABQ) or ar(△ABC) = ar( △BPQ) or 1/2 ar(||gm ABCD) = 1/2 ar(||gm PBQR) or ar(||gm ABCD) = ar(||gm PBQR)

Description : P is the mid-point of the side CD of a parallelogram ABCD. -Maths 9th

Last Answer : According to question prove that DA = AR and CQ = QR.

Description : A point E is taken on the side BC of a parallelogram ABCD. -Maths 9th

Last Answer : Given ABCD is a parallelogram and E is a point on BC. AE and DC are produced to meet at F. AB||CD anti BC||AD ,..(i)

Description : In Fig. 8.53,ABCD is a parallelogram and E is the mid - point of AD. A line through D, drawn parallel to EB, meets AB produced at F and BC at L.Prove that (i) AF = 2DC (ii) DF = 2DL -Maths 9th

Last Answer : Given, E is mid point of AD Also EB∥DF ⇒ B is mid point of AF [mid--point theorem] so, AF=2AB (1) Since, ABCD is a parallelogram, CD=AB ⇒AF=2CD AD∥BC⇒LB∥AD In ΔFDA ⇒LB∥AD ⇒LDLF​=ABFB​=1 from (1) ⇒LF=LD so, DF=2DL

Description : ABCD is a parallelogram. P is a point on AD such that AP = 1/3 AD and Q is a point on BC such that CQ = 1/3 BC. Prove that AQCP is a parallelogram. -Maths 9th

Last Answer : answer:

Description : Let ABCD be a parallelogram. P is any point on the side AB. If DP and CP are joined in such a way that they bisect the angles -Maths 9th

Last Answer : answer:

Description : If the diagonals of a parallelogram are equal, then show that it is a rectangle. -Maths 9th

Last Answer : Given : A parallelogram ABCD , in which AC = BD TO Prove : ABCD is a rectangle . Proof : In △ABC and △ABD AB = AB [common] AC = BD [given] BC = AD [opp . sides of a | | gm] ⇒ △ABC ≅ △BAD [ ... ∵ ∠ABC = ∠BAD] ⇒ 2∠ABC = 180° ⇒ ∠ABC = 1 /2 180° = 90° Hence, parallelogram ABCD is a rectangle.

Description : Diagonals of a parallelogram are perpendicular to each other. Is this statement true? Give reason for your answer. -Maths 9th

Last Answer : No, diagonals of a parallelogram are not perpendicular to each other, because they only bisect each other.

Description : If the diagonals of a parallelogram are equal, then show that it is a rectangle. -Maths 9th

Last Answer : Given : A parallelogram ABCD , in which AC = BD TO Prove : ABCD is a rectangle . Proof : In △ABC and △ABD AB = AB [common] AC = BD [given] BC = AD [opp . sides of a | | gm] ⇒ △ABC ≅ △BAD [ ... ∵ ∠ABC = ∠BAD] ⇒ 2∠ABC = 180° ⇒ ∠ABC = 1 /2 180° = 90° Hence, parallelogram ABCD is a rectangle.

Description : Diagonals of a parallelogram are perpendicular to each other. Is this statement true? Give reason for your answer. -Maths 9th

Last Answer : No, diagonals of a parallelogram are not perpendicular to each other, because they only bisect each other.

Description : A field in the form of a parallelogram has sides 60 m and 40 m and one of its diagonals is 80 m long. -Maths 9th

Last Answer : S(△ABC)=60+80+402=90S(△ABC)=60+80+402=90 ar△ABDar△ABD =90(90−80)(90−60)(90−40)−−−−−−−−−−−−−−−−−−−−−−−√=90(90−80)(90−60)(90−40) =90×10×30×50−−−−−−−−−−−−−−√=90×10×30×50 =30015−−√m2=30015m2 ar□ABCE=2×ar△ABDar◻ABCE=2×ar△ABD =60015−−√m2

Description : A field in the form of a parallelogram has sides 60 m and 40 m and one of its diagonals is 80 m long. -Maths 9th

Last Answer : Area of the parallelogram

Description : The diagonals of a quadrilateral are equal.Is it neccessary a parallelogram? -Maths 9th

Last Answer : Answer :- No,diagonals of a parallelogram bisect each other but may or may not be equal.

Description : The adjacent sides of a parallelogram are 2a and a. If the angle between them is 60°, then one of the diagonals of the parallelogram is -Maths 9th

Last Answer : answer:

Description : In the figure, ABCD is a rhombus, whose diagonals meet at 0. Find the values of x and y. -Maths 9th

Last Answer : Since diagonals of a rhombus bisect each other at right angle . ∴ In △AOB , we have ∠OAB + ∠x + 90° = 180° ∠x = 180° - 90° - 35° [∵ ∠ OAB = 35°] = 55° Also, ∠DAO = ∠BAO = 35° ∴ ∠y + ∠DAO + ∠BAO + ∠x ... 180° ⇒ ∠y = 180° - 125° = 55° Hence the values of x and y are x = 55°, y = 55°.