A man weighing 60 kg jumps on a vehicle of weight 240 kg moving with a velocity of 36 km/hours. The velocity of the vehicle after the man has jumped would be a.Less than 3.6 km/hour b.3.6 km/hour c.More than 3.6 km/hour d.4.5 km/hour e.None of the above

1 Answer

Answer :

a. Less than 3.6 km/hour

Related questions

Description : A locomotive of weight 100 tonnes is attached to train of wagons weighing 1000 tonnes. The locomotive pulls the wagons with a constant velocity of 36 km/hour. When the coupling between the train and wagons breaks, the wagons roll on 95 m in ... would be a.0.36 m b.0.44 m c.0.77 m. d.0.5 m e.0.66 m

Last Answer : d. 0.5 m

Description : A crate weighing 40 kg rests on a cart moving with an acceleration W. The coefficient of friction between the cart and the crate is a.2.45 m/sec2 b.4.00 m/sec2 c.0.25 m/sec2 d.4.16 m/sec2 e.1.25 m/sec2

Last Answer : a. 2.45 m/sec2

Description : The breaking strength of a rope is 400 N. A fireman weighing 60 kg slides down the rope. The rope will break if a.107 dynes b.the acceleration is 7.5 m/s2 c.the acceleration is 1.2 m/s2 d.the acceleration is 3.1 m/s2 e.the slides with an acceleration of 15 m/s2

Last Answer : c. the acceleration is 1.2 m/s2

Description : A car travelling at a speed of 60 km/hour is braked and comes to rest 6 seconds after the brakes are applied. The minimum coefficient of driction between the wheels and the road would be a.0.107 b.0.3 c.0.283 d.0.417 e.0.5

Last Answer : c. 0.283

Description : A man wished to move a block of size 3 m x 3 m weighing 80 kg. The coefficient of friction between the block and the ground is 0.27. Which of the following methods should be used? a.Slide along the ground by pushing b.Ask for cranes c.Pull it d.Tip it over e.Lift it bodily

Last Answer : d. Tip it over

Description : A body weighing one tonne falls through 8 cm on to a spring of stiffness 500 kg/cm the spring will be compressed through a.8 cm b.6 cm c.4 cm d.10 cm e.12 cm

Last Answer : a. 8 cm

Description : A horizontal load of 120 kg/mt is to be carried by a cable suspended between supports at same level and 60 mts apart. If the maximum permissible tension is 36,000 kg the required length of cable is a.63.3 mets b.62.5 mts c.60.8 mts d.107 dynes e.60.1 mts

Last Answer : e. 60.1 mts

Description : A body weighing 500 kg falls 8 cm and strikes a 500 kg/cm spring. The deformation of the spring will be a.?8 cm b.8 cm c.4 cm d.20.5 cm e.2 cm

Last Answer : c. 4 cm

Description : A cage weighing 200 kg is lowered down a mine shaft with uniform acceleration. In the first 5 sec the cage reaches a depth of 20 m. The tension in the cord lowering the cage would be a.836 kg b.167.2 kg c.100 kg d.41.8 kg e.200 kg

Last Answer : b. 167.2 kg

Description : A ball A of mass 0.25 kg moving on a smooth horizontal table with a velocity of 10 m/s strikes an identical stationary ball B on the table. If the impact is perfectly elastic, the velocity of the ball B just after the impact will be a.2.5 m/s b.zero c.5 m/s d.10 m/s e.107 dynes

Last Answer : c. 5 m/s

Description : A ball of mass 1 kg moving with a velocity of 2 m/sec collides directly with a stationary ball of mass 2 kg. If the first ball comes to rest after the impact the velocity of second ball after impact will be a.1.5 m/sec b.0.5 m/sec c.Zero d.2 m/sec e.1.0 m/sec

Last Answer : e. 1.0 m/sec

Description : A block of weight 20 kg slides with an initial velocity of 2 m sec down an inclined plane on to a spring of stiffness 10 kg/cm. If the co--efficient of friction is 0.2, angle ? = 30 the ratio of ... be a.More than one b.One c.Less than one d.Depends on the stiffness of spring e.None of the above

Last Answer : a. More than one

Description : A ball weighing 250 gm is thrown vertically upwards with a velocity of 980 cm/sec. The time that the ball will take to return back to earth would be a.1 sec b.4 sec c.2 sec d.5 sec e.3 sec

Last Answer : c. 2 sec

Description : A gun fires shell with a muzzle velocity of 600 m/sec. The angle of inclination of the gun so that the shell hits a target at a distance of 32 km at level 100 m higher than the gun would be approximately? a.60? b.45? c.30? d.15? e.Either of (A) and (C)

Last Answer : e. Either of (A) and (C)

Description : Power required for a train weighing 200 Mg to move at a uniform speed of 60 Kmph up an incline of 1 in 200 is (Resistance due to friction is negligible) a.16.67 KW b.163.5 KW c.1000 KW d.9810 KW e.Tapered bearing

Last Answer : b. 163.5 KW

Description : A man is standing near the edge of a uniformly rotating platform about an axis passing through its centre. The speed of rotation of the platform will decrease if he a.extends his arms outwards b.moves ... heavy bag from one of his friends standing near by and holds it in his hand e.107 dynes

Last Answer : d. accepts a heavy bag from one of his friends standing near by and holds it in his hand

Description : A man is standing ner the edge of a uniformly rotating platform about an axis passing through its centre. The speed of rotation of the platorm will decrease if he a.extends his arms outwards b.107 ... towards the axis of rotation d.jumps out from that platform e.take out his coat and throws away

Last Answer : a. extends his arms outwards

Description : A train moving at 60 kilometers per hour is struck by a bullet moving 1000 m/sec at right angles to the train. The direction with which the bullet appears to strike the train would be a.75? b.60? c.22 d.30? e.45?

Last Answer : e. 45?

Description : Work done by a body of mass 100 kg moving along a circular path of radius 2 m with a uniform velocity of 10 m/sec is a.5000 J b.2500 J c.509.68 J d.None of the above e.Tapered bearing

Last Answer : d. None of the above

Description : A jet of water of cross-sectional area 20 sq. cm impinges on a plate at an angle of 60? with a velocity of 10 m/sec. Neglecting the friction between the jet and plate (density of water 1000/9.81 kgm-1 sec2 per cubic meter), the ... a.15 - 20 kg b.20 - 25 kg c.5 - 10 kg d.25 - 30 kg e.10 - 15 kg

Last Answer : a. 15 - 20 kg

Description : A cannon of barrel length 2 m fires a shell of weight 6 kg with a muzzle velocity of 50 m/sec. The force exerted by the gases on the shell would be approximately a.76 t b.19 t c.152 t d.8.5 t e.38 t

Last Answer : e. 38 t

Description : The ideal angle of banking provided on roads a.Depends on (velocity)2 of vehicle b.Depends on the nature of road surface c.Depend on coefficient of friction between the road and the vehicle cantact point d.Depends on weight of the vehicle e.All above

Last Answer : a. Depends on (velocity)2 of vehicle

Description : A body whose true weight is 14 kg appears to weigh 15 kg when weighed with the help of a spring balance in a moving lift. The acceleration of the lift at the time was a.1 m/sec2 b.0.7 m/sec2 c.0.5 m/sec2 d.1.4 m/sec2 e.0.35 m/sec2

Last Answer : b. 0.7 m/sec2

Description : In which case power required would be more a.In lifting up a weight of 100 kg at a velocity of 3 m/sec but accelerating upwards at 0.5 m/sec b.In lowering a weight of 100 kg along an a inclined plane ... speed of 3 m/sec e.In lowering the weight at a velocity of 3 m/sec and acceleration of 1 m/sec2

Last Answer : a. In lifting up a weight of 100 kg at a velocity of 3 m/sec but accelerating upwards at 0.5 m/sec

Description : The mass, in kg, of the earth if its radius is 6400 km, will be a.6 x 1024 b.6 x 1025 c.107 dynes d.6 x 1023 e.6 x 1022

Last Answer : a. 6 x 1024

Description : A stone of wight 100 kg is thrown vertically upwards by a man of height y = 1.8 m with an initial velocity of 20 m/sec. The maximum height to which it will rise would be a.22.2 m b.26 m c.15.1 m d.20.2 m e.10 m

Last Answer : a. 22.2 m

Description : A cannon of weight 10 tonnes fires a shell of 50 kg with a muzzle velocity of 900 m/sec at an angle of 30?. The time taken for the shell to emerge from the barrel is 0.004 sec. The velocity of the cannon would be a.3.9 m/sec b.7.8 m/sec c.8.95 m/sec d.1.95 m/sec e.5.85 m/sec

Last Answer : a. 3.9 m/sec

Description : The excape velocity on the surface of the earth is a.11.2 km/s b.2.2 km/s c.5.6 km/s d.4.4 km/s e.1 km/s

Last Answer : e. 1 km/s

Description : The tension in the wire rope supporting a lift moving with a uniform velocity a.Is more when the lift is moving upwards b.Is more when the lift is moving downwards c.Is less when the lift ... down-wards d.Is less when the lift is moving upwards e.Remains constant irrespective of the lift movement

Last Answer : e. Remains constant irrespective of the lift movement

Description : A rocket is fired vertically from the ground with a resultant vertical acceleration of 10 m/sec the fuel is finished in one minute and it continues to move up. The maximum height reached will be a.2 km b.20 km c.36 km d.10 km e.80 km

Last Answer : a. 2 km

Description : A body of weight 100 kg is placed on a horizontal plane. A horizontal force of 30 kg is applied and the block is just on the point of motion. The angle of friction is a.About 16? b.30? c.45? d.60? e.None of the above

Last Answer : a. About 16?

Description : The periodic time of a body moving in Simple Harmonic Motion is a.Directly proportional to its angular velocity b.Directly proportional to the weight of the body c.Inversely proportional to ... d.Directly proportional to the momentum of swinging body e.Inversely proportional to the angular velocity

Last Answer : e. Inversely proportional to the angular velocity

Description : A car is travelling at 90 km/hour on a rough road where the coefficient of friction between the road and the tyre is 0.5. The distance the car will skid before stopping when the brakes are jammed suddenly would be a.127.4 m b.95.55 m c.63.7 m d.31.85 m e.90 m

Last Answer : c. 63.7 m

Description : The work done in sliding a block of weight of 50 kg up a plane inclined at an angle of 30? to the horizontal so that the block is lifted through 1 m ( a.More than 50 kgm b.50 kgm c.Less than 5 kgm d.15 kgm only e.None of the above

Last Answer : a. More than 50 kgm

Description : In a tug of war, five men pull a rope to the left at A and six moen pull the rope at B. A weight of 5 kg is hung vertically from the centre of the rope. In order that the rope AB be horizontal ... to be applied at both ends d.the force required on A must not be equal to that on B e.107 dynes

Last Answer : c. infinite force will be required to be applied at both ends

Description : The time required to stop a car moving with a velocity 20 m/sec within a distance of 40 m is equal to a.8 sec b.2 sec c.4 sec d.10 sec e.6 sec

Last Answer : c. 4 sec

Description : The weight of a 72 kg man on earth's surface is a.100.3 N b.72 N c.107 dynes d.706.3 N e.760 N

Last Answer : d. 706.3 N

Description : The excape velocity for the moon is nearly a.5 km/s b.11.2 km/s c.107 dynes d.2.4 km/s e.1.1 km/s

Last Answer : d. 2.4 km/s

Description : An automobile weighing 2800 lb and travelling at 30 miles/hr, hits a depression in the road which has a radius of curvature of 50 ft. What is the total force to which springs are subjected. a.8230 lb b.6170 lb c.2800 ib d.107 dynes e.3280 lb

Last Answer : b. 6170 lb

Description : A stone weighing 20 N is whirling in a vertical circle at the extremity of a string 100 cm long. The tension in the string will be zero a.at the highest position b.at the lowest position c.at the midway position d.at none of the above e.107 dynes

Last Answer : a. at the highest position

Description : A train travels between two stations 15 km apart in 18 minutes. If the train accelerates for a part of journey uniformly followed by uniform retardation, the maximum speed attained by the train during the journey will by a.125 km/hr b.107 dynes c.80 km/hr d.100 km/hr e.60 km/hr

Last Answer : d. 100 km/hr

Description : A train travels between two stations 15 km, apart in 18 minutes. If the train accelerates for a part of journey uniformly followed by uniform relardation, the maximum speed attained by the train, during, the journey, will be a.60 km/hr b.80 km/hr c.125 km/hr d.100 km/hr e.107 dynes

Last Answer : d. 100 km/hr

Description : A flywheel starting from rest and accelerating uniformly performs 25 revolutions in 5 sec. Its angular velocity in rpm after 10 seconds would be a.50 rpm b.20 rpm c.25 rpm d.60 rpm e.45 rpm

Last Answer : b. 20 rpm

Description : A 5 m ladder of mass 25 kg is placed in a position where its inclination to a vertical wall is at 30?. A 100 kg man is to climb the ladder. If the coefficient of static friction is 0.25 the height along ladder at which the slipping will be induced would be a.2.4 m b.1.6 m c.0.8 m d.1.2 m e.0.5 m

Last Answer : c. 0.8 m

Description : The angular velocity of hour hand of a watch is a.0.0001745 sec-1 b.0.0001455 sec-1 c.0.0000145 sec-1 d.0.1045 sec-1 e.0.001745 sec-1

Last Answer : b. 0.0001455 sec-1

Description : A force of 100 Newtons acts for 0.5 seconds on a body of mass 20 kg which is initially at rest. The velocity attained by the body is a.20 m/s b.5 m/s c.2.5 m/s d.0.5 m/s e.107 dynes

Last Answer : c. 2.5 m/s

Description : A rope of weight 0.5 kg/m hangs from a drum for a height of 6 m. The work done in winding up the rope will be a.9 kg-m b.3 kg-m c.12 kg-m d.18 kg-m e.6 kg-m

Last Answer : a. 9 kg-m

Description : A man lifts a stone weighting 300 g from the ground to a height of 2m and throws it horizontally with a velocity of 6 m/sec. The work done by the man is a.7.686 J b.11.286 J c.5.886 J d.8.343 J e.Tapered bearing

Last Answer : b. 11.286 J

Description : A dash pot consists of a cylinder 10 cm in diameter in which slides a piston 12 cm long having a radial clearance of 1 mm. The cylinder is filled with oil having a viscosity of 1 poise. What will be the resistance offered ... with a velocity of 3 cm/sec a.1090 kg b.100 kg c.10900 kg d.10 kg e.50 kg

Last Answer : c. 10900 kg

Description : A boy sitting in a rail road car throws a ball straight up into the air. The ball will fall back into his hands when the rail road car is a.moving at constant velocity b.accelerating ... inclined plane, while another identical block B is released for free fall from the same height e.decelerating

Last Answer : a. moving at constant velocity