Radio telescopes are better than optical telescopes because A. they can detect faint galaxies which no optical telescope can  B. they can work even in cloudy conditions  
C. they can work during the day and night  
D. All of the above

1 Answer

Answer :

D. All of the above

Related questions

Description : Radio telescopes are better than optical telescopes because - (1) they can detect faint galaxies which no optical telescope can (2) they can work even in cloudy conditions (3) they can work during the day and night (4) All of the above

Last Answer : (4) All of the above

Description : Are radio telescopes detect objects that optical telescopes cannot?

Last Answer : Yes, that is correct.

Description : In case of thin film of non-uniform thickness, when illuminated with white light, the film appears colored. This is due to change of what factor? (a) Conditions for path difference at different points of ... of film (c) Thickness of film is different at different points of film (d) All of above

Last Answer : (d) All of above

Description : Cross hairs in surveying telescopes, are fitted (A) In the objective glass (B) At the centre of the telescope (C) At the optical centre of the eye piece (D) In front of the eye piece

Last Answer : (D) In front of the eye piece

Description : The first reflecting telescope was built by: A. Galileo B. Copernicus C. Tyco Brahe D. Isaac Newton

Last Answer : D. Isaac Newton

Description : For all transparent material substances, the index of refraction A. A.is less than 1 B. B.is greater than 1 C. C.is equal to 1 D. Could be any of the given answers; it all depends on optical density

Last Answer : B. B.is greater than 1

Description : Optical fiber works on the A. principle of refraction B. total internal reflection C. scattering D. interference

Last Answer : B. total internal reflection

Description : Which of the following does NOT travel in a vacuum? A. Radio waves B. Gamma rays C. Magnetic waves D. Sound waves

Last Answer : D. Sound waves

Description : .Light is A. an electromagnetic wave B. a form of energy visible to the human eye C. the same type of energy as an X ray D. the same type of energy as a radio wave E. all of the above

Last Answer : E. all of the above

Description : The conditions for the production of constructive and destructive interference are reversed due to the fact that on striking the thin film -------. A. Two rays of splitted light undergo phase ... two rays of splitted light undergo phase change of 180° C. Light is diffracted, light is polarized

Last Answer : A. Two rays of splitted light undergo phase change of 180°

Description : he Radius (or diameter) of bright rings in Newton's rings is (a) Directly proportional to the square root of odd numbers (b) Inversely proportional to the square root of natural numbers (c) ... to the square root of even numbers (d) Directly proportional to the square root of natural numbers

Last Answer : (a) Directly proportional to the square root of odd numbers

Description : In Newton's Ring experiments , the diameter of dark rings is proportional to A. Odd Natural numbers B. Natural Number C. Even Natural Number D. Square root of natural number

Last Answer : In Newton's Ring experiments , the diameter of dark rings is proportional to A. Odd Natural numbers B. Natural Number C. Even Natural Number D. Square root of natural number

Description : n Newton's Ring experiments , the diameter of bright rings is proportional to A. Square root of Odd Natural numbers B. Natural Number C. Even Natural Number D. Square root of natural number

Last Answer : B. Natural Number

Description : The Event Horizon Telescope required multiple telescopes, with split-second synchronization, to capture the image of the M87 black hole. How many telescopes were used? -Space

Last Answer : Recognizing their vision and leadership within the Event Horizon Telescope (EHT), the National Academy of Sciences (NAS) awards Shep Doeleman and Heino Falcke the Henry Draper Medal. ... a recent, original investigation in astronomical physics of sufficient importance and benefit to science.

Description : Newton's rings are formed because of interference between the light Reflected from (a) Upper surface of Plano-convex lens and lower surface of plane glass plate (b) Lower surface of Plano-convex ... c) Lower and upper surface of Plano-convex (d) Lower and upper surfaces of plane glass plate

Last Answer : (b) Lower surface of Plano-convex lens and upper surface of plane glass plate

Description : The interference in thin films is because (a) The film reflects some light (b) The film is thin enough so that refracted ray is close to reflected ray (c) The reflected ray undergo path change of λ/2 (d) All of above

Last Answer : (d) All of above

Description : Interference in thin film is mainly because of (a) Division amplitude (b) Division of wave fronts (c) Addition of amplitude (d) Addition of wave fronts

Last Answer : (a) Division amplitude

Description : Interference in thin film is mainly because of A. Division amplitude B. Division of wave fronts C. Addition of amplitude D. Addition of wave fronts

Last Answer : A. Division amplitude

Description : Colors in thin films are because of A. Dispersion C. Interference B. Compton effect D. Diffraction

Last Answer : C. Interference

Description : On a rainy day, small oil films on water show brilliant colors'. This is due to A. dispersion B. interference C. diffraction D. Polarization 49.The critical angle for a beam of light ... A. absorbed B. totally reflected C. Partially reflected and partially transmitted D. Totally transmitted

Last Answer : C. Partially reflected and partially transmitted

Description : Newton's rings experiment is performed and radius (or diameter) is calculated. Now Plano-convex lens is replaced with another Plano-convex lens of greater Radius of curvature. What will be effect on radius ( ... ) will increase (c) Radius (or diameter) will decrease (d) There will be no effect

Last Answer : (b) Radius (or diameter) will increase

Description : Newton's rings experiment is performed with air gap between lens and plate. Now that gap is filled with water. What will be effect on radius (or diameter)? (a) Radius (or diameter) will remain ... or diameter) will increase (c) Radius (or diameter) will decrease (d) There will be no effect

Last Answer : (c) Radius (or diameter) will decrease

Description : In Newton's rings experiment, if monochromatic source of light is replaced by another monochromatic source of higher wavelength. What will be the effect on radius (or diameter)? (a) Radius (or ... be no effect (d) Radius (or diameter) will remain constant but there will be more brightness

Last Answer : (b) Radius (or diameter) will increase

Description : In Newton’s rings experiment, if we reduce the radius of curvature of Plano Convex lens to zero, what will be effect on Newton’s rings? (a)They will become more bright (b)They will become more dark ( c)They will disappear (d) They will be more dense

Last Answer : ( c)They will disappear

Description : In Newton’s rings experiment, if we reduce the radius of curvature of Plano convex lens to zero, what will be effect on Newton’s rings? A. They will become brighter B. They will become darker C. They will disappear D. They will be more dense

Last Answer : C. They will disappear

Description : Two sources of light are said to be coherent if __________. A. they produce waves of the same wave length B. they have the same amplitude of vibration C. they produce waves in the medium simultaneously D. they produce waves of the same amplitude

Last Answer : D. they produce waves of the same amplitude

Description : When electromagnetic waves strike the boundary of denser medium they are __________. A. Reflected, in phase B. Reflected out of phase by 180° C. reflected, they are completely absorbed

Last Answer : B. Reflected out of phase by 180°

Description : In a Young's double-slit experiment the center of a bright fringe occurs wherever waves from the slits differ in the distance they travel by a multiple of: A. a fourth of a wavelength B. a half a wavelength C. a wavelength D. three-fourths of a wavelength

Last Answer : C. a wavelength

Description : To observe interference in thin films with a light of wavelength λ, the thickness of the film (a) Should be much smaller than λ (b) Should be a few thousand times of λ (c) Should be of the order of λ (d) Should be of the order of nanometer

Last Answer : (c) Should be of the order of λ

Description : A film is said to be thin if its thickness is (a) Much smaller than wavelength of light (b) Comparable with one wavelength of light (c) Of the order of nanometer (10-9 m) (d) Of the order of Pico meter (10-12 m)

Last Answer : (b) Comparable with one wavelength of light

Description : An index of refraction less than one for a medium would imply A. That the speed of light in the medium is the same as the speed of light in vacuum B. That the speed of light in the ... greater than the speed of light in vacuum C. Refraction is not possible D. Reflection is not possible

Last Answer : B. That the speed of light in the medium is greater than the speed of light in vacuum

Description : Light enters air from water. The angle of refraction will be A. Greater than the angle of incidence. B. Equal to the angle of incidence. C. Less than the angle of incidence. D. None of these

Last Answer : C. Less than the angle of incidence.

Description : .A beam of light is incident on a large block of glass. The index of refraction of the glass is greater than one. Is the wavelength of the light in the glass? A. Longer than B. Shorter than C. The same as the wavelength of the light in the air? D. None of above

Last Answer : B. Shorter than

Description : To find prominent diffraction , the size of diffraction object should be A. greater than wavelength of light used B. comparable to order of wavelength of light C. less than wavelength of light used D. none of these.

Last Answer : B. comparable to order of wavelength of light

Description : When does the air cool most rapidly? Is it during w) a cloudy day x) a cloudy night y) a sunny day z) a clear night

Last Answer : ANSWER: Z -- A CLEAR NIGHT

Description : Why in Newton's rings setup, the beam splitter (mirror) is kept at 450? (a) It allows light rays to incident at 450over the top surface of Plano convex lens (b) It allows light rays to ... Plano convex lens (d) It allows light rays to incident at 900over the top surface of Plano convex lens

Last Answer : (d) It allows light rays to incident at 900over the top surface of Plano convex lens

Description : Newton’s light illustrate the phenomenon of (a) Interference (b) Diffraction (c) Dispersion (d) Polarisation

Last Answer : (a) Interference

Description : Interference pattern is observed in wedge-shaped film for monochromatic light. Now monochromatic light is replaced by white light. What will be the effect on interference pattern? (a) It will turn to dark (b) It will turn to bright (c) Bands will disappear (d) It will be a mixture of all colors

Last Answer : (d) It will be a mixture of all colors

Description : Interference pattern is observed in wedge-shaped film and bandwidth is noted. Now the angle of wedge is reduced to zero. What will be the effect on Bandwidth? (a) Bandwidth increases (b) Bandwidth decreases (c) Bands will disappear (d) There will not any effect

Last Answer : (c) Bands will disappear

Description : Interference pattern is observed in wedge-shaped film and bandwidth is noted. Now the angle of wedge is reduced. What will be the effect on bandwidth? (a) Bandwidth increases (b) Bandwidth decreases (c) Bands will disappear (d) There will not any effect

Last Answer : B) BANDWIDTH DECREASES

Description : Interference pattern is observed in wedge-shaped film and bandwidth is noted. Now the thin film is replaced by the film of higher refractive index. What will be the effect on bandwidth? (a) Bandwidth increases (b) Bandwidth decreases (c) Bands will merge (d) There will not any effect

Last Answer : (b) Bandwidth decreases

Description : What is the nature of interference pattern for thin film of wedge shaped (a) Concave outside (b) Convex outside (b) Equally spaced (d) Concave inside

Last Answer : (b) Convex outside

Description : What is the nature of interference pattern at the contact edge of wedge shaped film (a) Always bright (b) Always dark (c) Bright or dark depending upon the thickness of other end (d) Bright or dark depending upon the wavelength of the light

Last Answer : (b) Always dark

Description : In wedge shaped film the interference pattern has nature (a) Parallel to the end where thickness is non-zero (b) Perpendicular to contact edge (c) Parallel to contact edge (d) Perpendicular to the end where thickness is non-zero

Last Answer : (c) Parallel to contact edge

Description : A wedge shaped thin has (a) Non-uniform thickness (b) Zero thickness at one end and it increasing towards other end (c) Zero thickness at both ends (d) Thickness increase and decrease alternately

Last Answer : b) Zero thickness at one end and it increasing towards other end

Description : In interference experiment, by keeping all other parameters constant, if you see the thin film interference from different angles, you will observe (a)Uniform illumination of screen (b) Uniform ... c) Equally spaced dark and white bands (d) Few colored bands and then general illumination

Last Answer : (d) Few colored bands and then general illumination

Description : A thin film is observed in white light. The color of the film seen at a particular point depends upon (a)Location of observer (b)Width of the source (c) Distance of the source (d) Brightness of the source

Last Answer : (a)Location of observer

Description : In interference experiment, monochromatic light is replaced by white light, we will see (a) Uniform illumination of screen (b) Uniform darkness on the screen (c) Equally spaced dark and white bands (d) Few colored bands and then general illumination

Last Answer : (d) Few colored bands and then general illumination

Description : When a light wave suffers reflection at the interface between air and glass medium, the change of wavelength of the reflected wave in air is equal to (a) 0 (b) λ/2 (c) λ (d) 2λ

Last Answer : (b) λ/2