A shaft is designed for
(a) Strength alone
(b) Stiffness alone
(c) Both for strength and stiffness
(d) None

1 Answer

Answer :

(c) Both for strength and stiffness

Related questions

Description : A spring is designed for (a) Higher strength (b) Higher deflection (c) Higher stiffness (d) None

Last Answer : (b) Higher deflection

Description : A transmission shaft subjected to bending loads must be designed on the basis of (a) maximum normal stress theory (b) maximum shear stress theory (c) maximum normal stress and maximum shear stress theories (d) fatigue strength

Last Answer : (a) maximum normal stress theory

Description : Actual stress in the bolts of a flanged coupling of a shaft will be (a) More than the designed strength (b) Less than the designed strength (c) Neither more nor less than the designed strength (d) None

Last Answer : (b) Less than the designed strength

Description : The stiffness of solid shaft is---------- than the stiffness of hollow shaft with same weight. a) less b) more c) equal d) not equal

Last Answer : b) more

Description : Most important features of any spring are (a) Deflection, stiffness and strength (b) Stiffness, bending and shear strengths (c) Strain energy, deflection and strength (d) None

Last Answer : (c) Strain energy, deflection and strength

Description : A compression spring is made of music wire of 2 mm diameter having a shear strength and shear modulus of 800 Mpa and 80 Gpa respectively. The mean coil diameter is 20mm, free length is 40 mm, and the number ... by 8 times b. decreased by 2 times c. increased by 2 times d. decreased by 8 times

Last Answer : a. increased by 8 times

Description : Most important features of any spring are (a) Deflection, stiffness and strength (b) Stiffness, bending and shear strengths (c) Strain energy, deflection and strength (d) None

Last Answer : (c) Strain energy, deflection and strength

Description : A hollow shaft of 1 m length is designed to transmit a power of 30 kW at 700 rpm. The maximum permissible angle of twist in the shaft is 1o. The inner diameter of the shaft is 0.7 times the outer diameter. The modulus of ... shaft is _______. (a) 43 to 45 (b) 50to 60 (c) 70 to 80 (d) 85 to 100

Last Answer : (a) 43 to 45

Description : A power transmitting ductile material shaft under P, T and M will be designed on the basis of (a) Rankine theory (b) Guest Theory (c) Haigh theory (d) None

Last Answer : (b) Guest Theory

Description : Which of the following is not designed under torsion equation? a. Spindle b. Axle c. Low cost shaft d. Shaft with variable diameter

Last Answer : b. Axle

Description : Which of the machine component is designed under bending stress? a. Shaft b. Arm of a lever c. Key d. Belts and ropes

Last Answer : b. Arm of a lever

Description : From strength point of view, whether hollow or solid shaft will be preferable (a) Solid shaft (b) Hollow shaft (c) Both solid as well as hollow shaft (d) None

Last Answer : b) Hollow shaft

Description : For same weight, same material, same length a. Solid shaft is always stronger than a hollow shaft b. Solid shaft is always weaker than a hollow shaft and strength ratio will depend upon Do/Di of ... of a solid shaft is always weaker and the strength ratio will depend upon Do/Di of hollow shaft

Last Answer : b. Solid shaft is always weaker than a hollow shaft and strength ratio will depend upon Do/Di of hollow shaft

Description : The ratio of strength of a hollow shaft to that of a solid shaft subjected to torsion if both are of the same material and of the same outer diameters, the inner diameter of hollow shaft being half of the outer diameter is a. 15/16 b. 16/15 c. 7/8 d. 8/7

Last Answer : a. 15/16

Description : .The shafts are designed on the basis of (a) Rigidity (b) Strength (c) Both of these (d) Either of these

Last Answer : (c) Both of these

Description : The strength of hollow shaft is more than the strength of solid shaft of ---------weight. a) same b) different c) equal d) not equa

Last Answer : a) same

Description : The strength of a hollow shaft is ……… for the same length, material and weight of a solid shaft. (a) More (b) Less (c) Equal (d) None of these

Last Answer : (b) Less

Description : Strength of a shaft a. Is equal to maximum shear stress in the shaft at the time of elastic failure b. Is equal to maximum shear stress in the shaft at the time of rupture c. Is equal to torsional rigidity d. Is ability to resist maximum twisting moment

Last Answer : d. Is ability to resist maximum twisting moment

Description : Two shafts in torsion will have equal strength if a. Only diameter of the shafts is same b. Only angle of twist of the shaft is same c. Only material of the shaft is same d. Only torque transmitting capacity of the shaft is same

Last Answer : d. Only torque transmitting capacity of the shaft is same

Description : Which property is not required for shaft materials? a. High shear and tensile strength b. Good mach inability c. High fatigue strength d. Good cast ability

Last Answer : d. Good cast ability

Description : The strength of a hollow shaft for the same length, material and weight is ---------- a solid shaft. a. less than. b. more than. c. equal to. d. not equal to.

Last Answer : b. more than.

Description : The shafts are designed on the basis of a. strength and rigidity. b. ductility. c. malleablility. d. resilience.

Last Answer : a. strength and rigidity.

Description : The load required to produce a unit deflection in the spring is called (a) Modulus of Rigidity (b) Spring stiffness (c) Flexural rigidity (d) Tensional rigidity

Last Answer : b) Spring stiffness

Description : A spring of stiffness 100 N/mm used in a spring-loaded safety valve of diameter 20 mm on a boiler with the pressure inside the boiler equal to 1 MPa should be initially compressed by a. 5mm b. 3.14 mm c. 2mm d. 6.28 mm

Last Answer : b. 3.14 mm

Description : Springs with rectangular or square cross section used for a. higher stiffness b. larger volume c. larger length d. smaller length

Last Answer : b. larger volume

Description : A spring with 25 active coils cannot be accommodated within a given space. Hence 5 coils of the spring are cut. The stiffness of the new spring will be a. the same b. 1.25 times the original spring c. 0.8 times the original spring d. 20 times the original spring

Last Answer : b. 1.25 times the original spring

Description : Stiffness of the spring can be increased by a. increase the number of turns b. increase the free length c. decrease the number of turns d. decrease the spring wire diameter

Last Answer : c. decrease the number

Description : Two concentric springs with stiffness equal to 100 N/mm and 80 N/mm respectively, when subjected to load of 900N will deflect by a. 9mm b. 11.25 mm c. 5mm d. 31.5 mm

Last Answer : c. 5mm

Description : Determine number of coils in a helical compression spring, if modulus of rigidity is 80 Gpa and spring stiffness is 50 N/ mm. Assume wire diameter and spring index as 8 mm and 5 respectively a. 11.8 turns b. 12.8 turns c. 13.3 turns d. None of the above

Last Answer : b. 12.8 turns

Description : If a close-coiled helical spring absorbs 50 N-mm of energy while extending by 5 mm, its stiffness will be (a) 2 N/mm (b) 4 N/mm (c) 6 N/mm (d) 10 N/mm

Last Answer : (d) 10 N/mm

Description : A close-coiled helical spring of stiffness 30 N/mm is arranged in series with another such spring of stiffness 60 N/mm. The stiffness of composite unit is (a) 20 N/mm (b) 30 N/mm (c) 45 N/mm (d) 90 N/mm

Last Answer : (a) 20 N/mm

Description : Two close-coiled helical springs are equal in all respects except the number of turns. If the number of turns are in the ratio of 2:3, then the stiffness of the spring will be in the ratio of (a) 2:3 (b) 4:9 (c) 3:2 (d) 9:4

Last Answer : (c) 3:2

Description : A close –coiled helical spring is cut into two equal parts. The stiffness of the resulting springs will be (a) same (b) double (c) half (d) One-fourth

Last Answer : (b) double

Description : In the above question, the ratio of stiffness of spring A to spring B is (a) 1/2 (b) 1 (c) 2 (d) 4

Last Answer : (c) 2

Description : The load required to produce a unit deflection in the spring is called (a) Modulus of Rigidity (b) Spring stiffness (c) Flexural rigidity (d) Tensional rigidity

Last Answer : (b) Spring stiffness

Description : Pure Buckling uses the equation of (a) Rankin-Gordon (b) Euler (c) Stiffness (d) None

Last Answer : (b) Euler

Description : What is the maximum shear stress induced in a solid shaft of 50 mm diameter which is subjected to both bending moment and torque of 300 kN.mm and 200 kN.mm respectively? a. 9.11 N/mm2 b. 14.69 N/mm2 c. 16.22 N/mm2 d. 20.98 N/mm2

Last Answer : b. 14.69 N/mm2

Description : What is the maximum principle stress induced in a solid shaft of 40 mm diameter which is subjected to both bending moment and torque of 300 kN.mm and 150 kN.mm respectively? a. 21.69 N/mm2 b. 28.1 N/mm2 c. 50.57 N/mm2 d. 52.32 N/mm2

Last Answer : c. 50.57 N/mm2

Description : Stress in the cross section of a shaft at the centre ________ a. is zero b. decreases linearly to the maximum value of at outer surface c. both a. and b. d. none of the above

Last Answer : a. is zero

Description : The angle of twist for a transmission shaft is inversely proportional to (a) shaft diameter (b) (shaft diameter)2 (c) (shaft diameter)3 (d) (shaft diameter)4

Last Answer : (a) shaft diameter

Description : Solid shaft is ----------than hollow shaft of same weight. a) cheaper b) costlier c) not costlier d) not cheaper

Last Answer : b) costlier

Description : Calculate the shaft diameter on rigidity basis if torsional moment is 196000N-mm, length of shaft is 1000mm. Permissible angle of twist per meter is 0.5’ and take G=79300N/mm². a) None of the listed b) 41.2mm c) 35.8mm d) 38.8mm

Last Answer : b) 41.2mm

Description : While designing shaft on the basis of torsional rigidity, angle of twist is given by? a) 100Ml/Gd⁴ b) 584Ml/Gd⁴ c) 292 Ml/Gd⁴ d) 300 Ml/Gd⁴

Last Answer : b) 584Ml/Gd⁴

Description : Two shafts A and B are made of the same material. The diameter of the shaft A is twice as that of shaft B. The power transmitted by the shaft A will be ........... of shaft B. (a) twice (b) four times (c) eight times (d) sixteen times

Last Answer : (c) eight times

Description : The standard length of the shaft is (a) 5 m (b) 8 m (c) 9 m (d) 10m

Last Answer : (a) 5 m

Description : A hollow shaft has an inner diameter of 3.7 cm and an outer diameter of 4.0 cm. A 1 kN-m torque is applied to this shaft. What is the shear stress at the mid-radius of this shaft? (a) 117Mpa (b) 178 Mpa (c) 286 Mpa (d) 363 Mpa

Last Answer : (c) 286 Mpa

Description : A solid circular shaft of diameter 100 mm is subjected to an axial stress of 50 Mpa. It is further subjected to a torque of 10 kNm. The maximum principal stress experienced on the shaft is closest to (a) 41Mpa (b) 82 Mpa (c) 164 Mpa (d) 204 Mpa

Last Answer : (b) 82 Mpa

Description : The strain energy will be higher in which shaft under the same torque (a) Solid shaft (b) Hollow shaft (c) Same in Solid as well as hollow shaft (d) None

Last Answer : (b) Hollow shaft

Description : A power transmitting ductile material shaft under P, T and M will fail under (a) Tensile considerations only (b) Compressive considerations only (c) Shear considerations only (d) None

Last Answer : (c) Shear considerations only

Description : Equivalent bending moment in a shaft subjected to axial load P, torque T and bending moment M is (a) Meq = 0.5 [M + (M2 + T2)0.5]0.5 (b) Meq = 0.5 [M + (M2 + T2)0.5] (c) Meq = ( M2 + T2)0.5 (d) None

Last Answer : (b) Meq = 0.5 [M + (M2 + T2)0.5]