A spring is designed for
(a) Higher strength
(b) Higher deflection
(c) Higher stiffness
(d) None

1 Answer

Answer :

(b) Higher deflection

Related questions

Description : Most important features of any spring are (a) Deflection, stiffness and strength (b) Stiffness, bending and shear strengths (c) Strain energy, deflection and strength (d) None

Last Answer : (c) Strain energy, deflection and strength

Description : Most important features of any spring are (a) Deflection, stiffness and strength (b) Stiffness, bending and shear strengths (c) Strain energy, deflection and strength (d) None

Last Answer : (c) Strain energy, deflection and strength

Description : The load required to produce a unit deflection in the spring is called (a) Modulus of Rigidity (b) Spring stiffness (c) Flexural rigidity (d) Tensional rigidity

Last Answer : b) Spring stiffness

Description : The load required to produce a unit deflection in the spring is called (a) Modulus of Rigidity (b) Spring stiffness (c) Flexural rigidity (d) Tensional rigidity

Last Answer : (b) Spring stiffness

Description : A shaft is designed for (a) Strength alone (b) Stiffness alone (c) Both for strength and stiffness (d) None

Last Answer : (c) Both for strength and stiffness

Description : A compression spring is made of music wire of 2 mm diameter having a shear strength and shear modulus of 800 Mpa and 80 Gpa respectively. The mean coil diameter is 20mm, free length is 40 mm, and the number ... by 8 times b. decreased by 2 times c. increased by 2 times d. decreased by 8 times

Last Answer : a. increased by 8 times

Description : A spring of stiffness 100 N/mm used in a spring-loaded safety valve of diameter 20 mm on a boiler with the pressure inside the boiler equal to 1 MPa should be initially compressed by a. 5mm b. 3.14 mm c. 2mm d. 6.28 mm

Last Answer : b. 3.14 mm

Description : A spring with 25 active coils cannot be accommodated within a given space. Hence 5 coils of the spring are cut. The stiffness of the new spring will be a. the same b. 1.25 times the original spring c. 0.8 times the original spring d. 20 times the original spring

Last Answer : b. 1.25 times the original spring

Description : Stiffness of the spring can be increased by a. increase the number of turns b. increase the free length c. decrease the number of turns d. decrease the spring wire diameter

Last Answer : c. decrease the number

Description : Determine number of coils in a helical compression spring, if modulus of rigidity is 80 Gpa and spring stiffness is 50 N/ mm. Assume wire diameter and spring index as 8 mm and 5 respectively a. 11.8 turns b. 12.8 turns c. 13.3 turns d. None of the above

Last Answer : b. 12.8 turns

Description : If a close-coiled helical spring absorbs 50 N-mm of energy while extending by 5 mm, its stiffness will be (a) 2 N/mm (b) 4 N/mm (c) 6 N/mm (d) 10 N/mm

Last Answer : (d) 10 N/mm

Description : A close-coiled helical spring of stiffness 30 N/mm is arranged in series with another such spring of stiffness 60 N/mm. The stiffness of composite unit is (a) 20 N/mm (b) 30 N/mm (c) 45 N/mm (d) 90 N/mm

Last Answer : (a) 20 N/mm

Description : Two close-coiled helical springs are equal in all respects except the number of turns. If the number of turns are in the ratio of 2:3, then the stiffness of the spring will be in the ratio of (a) 2:3 (b) 4:9 (c) 3:2 (d) 9:4

Last Answer : (c) 3:2

Description : A close –coiled helical spring is cut into two equal parts. The stiffness of the resulting springs will be (a) same (b) double (c) half (d) One-fourth

Last Answer : (b) double

Description : In the above question, the ratio of stiffness of spring A to spring B is (a) 1/2 (b) 1 (c) 2 (d) 4

Last Answer : (c) 2

Description : eaf springs are designed on the basis of (a) Maximum bending stresses (b) Maximum deflection (c) Maximum bending as well as maximum deflection (d) None

Last Answer : (c) Maximum bending as well as maximum deflection

Description : A beam is designed on the basis of a. Maximum deflection. b.Minimum deflection c.Maximum slope d.None.

Last Answer : a. Maximum deflection.

Description : Springs with rectangular or square cross section used for a. higher stiffness b. larger volume c. larger length d. smaller length

Last Answer : b. larger volume

Description : The type of spring used to achieve any linear and non-linear load-deflection characteristics is (a)spiral spring (b) non-ferrous spring (c)Belleville spring (d) torsion spring

Last Answer : (c)Belleville spring

Description : The weight or pressure required to deflect a spring in mm is called the spring (a) Weight (b) deflection (c) rate (d) rebound

Last Answer : c) rate

Description : Belleville spring can only produce linear load deflection characteristics. (a) Only linear (b) Linear as well as non linear (c) Non-linear (d) None of the mentioned

Last Answer : (b) Linear as well as non linear

Description : The most important property for the spring material is (a) High elastic limit (b) High deflection value (c) Resistance to fatigue and shock (d) All of these

Last Answer : (d) All of these

Description : Deflection in a spring should be (a) Large (b) Small (c) Zero (d) None

Last Answer : (a) Large

Description : Maximum deflection in a leaf spring is given by (a) 3WL3/4Enbt3 (b) 3WL3/8Enbt3 (c) 3WL3/16Enbt3 (d) None

Last Answer : (b) 3WL3/8Enbt3

Description : Initial gap between two turns of a close coil helical tension spring should be a. 0.5 mm b. based on the maximum deflection c. 1 mm d. zero

Last Answer : d. zero

Description : Find total number coils in a spring having square and ground ends. Deflection in the spring is 6mm when load of 1100N is applied. Modulus of rigidity is 81370N/mm². Wire diameter and pitch circle diameter are 10mm and 50mm respectively. a) 7 b) 6 c) 5 d) 4

Last Answer : a) 7

Description : The axial deflection of spring for the small angle of θ is given by? a) 328PDᵌN/Gd⁴ b) 8PDᵌN/Gd⁴ c) 16PDᵌN/Gd⁴ d) 8PD²N/Gdᵌ

Last Answer : b) 8PDᵌN/Gd⁴

Description : Deflection in a spring should be (a) Large (b) Small (c) Zero (d) None

Last Answer : (a) Large

Description : Deflection in a close coiled helical spring is (a) 16 WR3n/Gd4 (b) 32 WR3n/Gd4 (c) 64 WR3n/Gd4 (d) None

Last Answer : (c) 64 WR3n/Gd4

Description : Deflection in a spring should be (a) Large (b) Medium (c) Small (d) None

Last Answer : (a) Large

Description : The close-coiled helical springs ‘A’ and ‘B’ are of same material, same coil diameter, same wire diameter and subjected to same load. If the number of turns of spring ‘A’ is half that of spring ‘B’, the ratio of deflection of spring ‘A’ to spring ‘B’ is (a)1/2 (b) 1 (c) 2 (d) 4

Last Answer : (a)1/2

Description : The most important property for the spring material is (a) High elastic limit (b) High deflection value (c) Resistance to fatigue and shock (d) All of these

Last Answer : (d) All of these

Description : The design of a beam is based on strength criteria, if the beam is sufficiently strong to resist ----------------. a.Shear force b.deflection c. both a and b. d. none of the above.

Last Answer : a.Shear force

Description : A open helical spring under axial torque is designed on the basis of (a) Shear (b) Compression (c) Bending (d) None

Last Answer : d) None

Description : A closed helical spring under axial torque is designed on the basis of (a) Shear (b) Compression (c) Bending (d) None

Last Answer : (c) Bending

Description : A closed helical spring under axial load is designed on the basis of (a) Shear (b) Compression (c) Bending (d) None

Last Answer : (a) Shear

Description : A carriage spring is designed on the basis of (a) Shear (b) Compression (c) Bending (d) None

Last Answer : (c) Bending

Description : A transmission shaft subjected to bending loads must be designed on the basis of (a) maximum normal stress theory (b) maximum shear stress theory (c) maximum normal stress and maximum shear stress theories (d) fatigue strength

Last Answer : (a) maximum normal stress theory

Description : Actual stress in the bolts of a flanged coupling of a shaft will be (a) More than the designed strength (b) Less than the designed strength (c) Neither more nor less than the designed strength (d) None

Last Answer : (b) Less than the designed strength

Description : .The shafts are designed on the basis of (a) Rigidity (b) Strength (c) Both of these (d) Either of these

Last Answer : (c) Both of these

Description : The shafts are designed on the basis of a. strength and rigidity. b. ductility. c. malleablility. d. resilience.

Last Answer : a. strength and rigidity.

Description : The spring constant of a helical compression spring does not depend on a. Coil diameter b. Material strength c. Number of active turns d. wire diameter

Last Answer : b. Material strength

Description : The force required to produce unit deflection is known as (A) gradient of spring (B) stiffness of the spring (C) spring constant (D) all of the above

Last Answer : (D) all of the above

Description : The stiffness of spring is, (A) Deflection per unit of axial force (B) Force per unit cross-sectional area of spring (C) Ratio of mean coil diameter to wire diameter (D) Force required to produce unit deflection

Last Answer : (D) Force required to produce unit deflection

Description : A mass of 10 kg when suspended from a spring causes a static deflection of 0.01m. Find the spring stiffness for the same system. A 9810 N/m B 8910 N/m C 1098 N/m D 9801 N/m

Last Answer : A 9810 N/m

Description : A mass of 10 kg when suspended from a spring causes a static deflection of 0.01m. Find the spring stiffness for the same system. A 9810 N/m B 8910 N/m C 1098 N/m D 9801 N/m

Last Answer : D 9801 N/m

Description : A vertical spring-mass system has a mass of 0.5 kg and an initial deflection of 0.2 cm. Find the spring stiffness. A. 345 N/m B. 245 N/m C. 3452 N/mD. 2452 N/m

Last Answer : D. 2452 N/m

Description : A mass of 10 kg when suspended from a spring causes a static deflection of A 0.01m. Find the spring stiffness for the same system. (A) 9810 N/m (B) 8910 N/m (C)1098 N/m (D) 9801 N/m

Last Answer : A) 9810 N/m

Description : The natural frequency of the spring mass is inversely proportional to A. Stiffness B. Mass C. Density D. Deflection

Last Answer : B. Mass

Description : The load on a spring per unit deflection, is called  (A) Stiffness  (B) Proof resilience  (C) Proof stress  (D) Proof load

Last Answer : (A) Stiffness