.Maximum slope in a cantilever beam with a Moment M at the free end will be  a. 3ML/EI.
b.2ML/EI.
C. ML/EI.
d. None.

1 Answer

Answer :

C. ML/EI.

Related questions

Description : The deflection due to couple M at the free end of a cantilever length L is  (A) ML/EI (B) 2ML/EI (C) ML²/2E (D) M²L/2EI

Last Answer : (C) ML²/2EI

Description : Maximum slope in a cantilever beam with UDL w over the entire length will be a. At the free end. b. At the fixed end. c. At the centre d. None.

Last Answer : a. At the free end.

Description : Maximum slope in a cantilever beam with W at the free end will be a.WL2/4EI b.WL2/8EI c.WL2/2EI d.None.

Last Answer : c.WL2/2EI

Description : Maximum slope in a cantilever beam with W at the free end will be a.at the free end. b. at the centre c.at the fixed end. d.None.

Last Answer : a.at the free end.

Description : In cantilever beam the slope and deflection at the free end is ---------. a.zero b.maximum c.minimum d.none of above.

Last Answer : b.maximum

Description : In case of a cantilever beam, bending moment at the free end will be (a) Maximum (b) Minimum (c) Zero (d) None

Last Answer : c) Zero

Description : Maximum slope in a S.S beam with UDL w at the entire span will be a. wl3/ 16EI. b.wl3/ 24EI. c. wl3/ 48 EI. d.None

Last Answer : b.wl3/ 24EI.

Description : A cantilever of length is subjected to a bending moment at its free end. If EI is the flexural  rigidity of the section, the deflection of the free end, is  (A) ML/EI (B) ML/2EI (C) ML²/2EI (D) ML²/3EI

Last Answer : (D) ML²/3EI

Description : In case of a cantilever beam, bending moment at the fixed end will be (a) Maximum (b) Minimum (c) Zero (d) None

Last Answer : (a) Maximum

Description : The bending moment at the fixed end of a cantilever beam is (a) Maximum (b) Minimum (c) Wl/2 (d) Wl

Last Answer : (a) Maximum

Description : A cantilever beam of span 3m carries a point load 100 N at the free end. The maximum B.M in the beam will be (a) 100 N-m (b) 300 N-m (c) 150 N-m (d) 600 N-m

Last Answer : (b) 300 N-m

Description : Maximum slope in a cantilever beam with UDL w over the entire length will be a. wl3/9EI b. wl3/6EI c. wl3/3EI d. None.

Last Answer : b. wl3/6EI

Description : The expression EI d4y/dx4 at a section of a member represents a. Shearing force b. rate of loading c. bending moment d.slope.

Last Answer : b. rate of loading

Description : .The expression EI d3y/dx3 at a section of a member represents a.Shearing force b.rate of loading c.bending moment d.slope.

Last Answer : a.Shearing force

Description : The expression EI d2y/dx2 at a section of a member represents a. Shearing force b.rate of loading c.bending moment d.slope.

Last Answer : c.bending moment

Description : A cantilever of length 3m carries a uniformly distributed load of 15KN/m over a length of 2m from the free end.If I= 108 mm4 and E= 2×105 N/mm2,find the slope at the free end? a.0.00326 rad b.0.00578 rad c.0.00677 rad d.0.00786 rad

Last Answer : a.0.00326 rad

Description : A cantilever of length 3 m carries a uniformly distributed load over the entire length.If the deflection at the free end is 40 mm,find the slope at the free end. a.0.0115 rad b.0.01777 rad c.0.001566 rad d.0.00144 rad

Last Answer : b.0.01777 rad

Description : Maximum bending moment in a cantilever beam having a UDL over entire length will be (a) wL2/2 (b) wL2/4 (c) wL2/8 (d) None

Last Answer : a) wL2/2

Description : Maximum deflection in a cantilever beam with UDL w over the entire length will be a. At the free end. b. At the fixed end. c. At the centre d. None.

Last Answer : a. At the free end.

Description : Maximum deflection in a cantilever beam with W at the free end will be a. at the free end. b.at the fixed end. c.at the centre d.None.

Last Answer : a. at the free end.

Description : Maximum deflection in a cantilever beam with W at the free end will be a.WL3/6EI. b.WL3/2EI c.WL3/3EI d.None.

Last Answer : c.WL3/3EI

Description : In a cantilever subjected to a combination of concentrated load, uniformly distributed load and uniformly varying load, Maximum bending moment is (a) Where shear force=0 (b) At the free end (c) At the fixed end (d) At the mid-point

Last Answer : (c) At the fixed end

Description : In a cantilever subjected to a concentrated load (W) at the free end and having length =l, Maximum bending moment is (a) Wl at the free end (b) Wl at the fixed end (c) Wl/2 at the fixed end (d) Wl at the free end

Last Answer : (b) Wl at the fixed end

Description : A cantilever of length 2m carries a point load of 30KN at the free end.If I = 108 mm4 and E= 2×105 N/mm2. What is the slope of the cantilever at the free end? a.0.503 rad b.0.677 rad c. 0.003 rad d.0.008

Last Answer : c. 0.003 rad

Description : The slope at the free end of a cantilever of length 1m is 10 .If the cantilever carries a uniformly distributed load over the whole length ,then the deflection at the free end will be a.1cm b.1.309 cm c.2.618 cm. d.3.927cm.

Last Answer : b.1.309 cm

Description : In case of a cantilever beam, shear force at the fixed end will be (a) Maximum (b) Minimum (c) Zero (d) None

Last Answer : (a) Maximum

Description : A cantilever beam of length of 2m carries a U.D.L. of 150 N/m over its whole span. The maximum shear force in the beam will be (a) 150 N (b) 300 N (c) 150 N-m (d) 600 N-m

Last Answer : (b) 300 N

Description : In case of a cantilever beam having UDL, bending moment variation will be (a) Linear (b) Parabolic (c) Cubic (d) None

Last Answer : (b) Parabolic

Description : In case of a cantilever beam having concentrated loads, bending moment variation will be (a) Linear (b) Parabolic (c) Cubic (d) None

Last Answer : (a) Linear

Description : The slope of shear force line at any section of the beam is also called (a) Bending moment at that section (b) Rate of loading at that section (c) Maximum Shear force (d) Maximum bending moment

Last Answer : (b) Rate of loading at that section

Description : A cantilever is a beam whose (a) Both ends are supported either on rollers or hinges (b) One end is fixed and other end is free (c) Both ends are fixed (d) Whose both or one of the end has overhang

Last Answer : b) One end is fixed and other end is free

Description : In a cantilever carrying a uniformly varying load starting from zero at the free end, the Bending moment diagram is (a) A horizontal line parallel to x-axis (b) A line inclined to x-axis (c) Follows a parabolic law (d) Follows a cubic law

Last Answer : (d) Follows a cubic law

Description : The bending moment diagram for a cantilever with point load, at the free end will be (a) A triangle with max. height under free end (b) A triangle with max. height under fixed end (c) A parabolic curve (d) None of these

Last Answer : (b) A triangle with max. height under fixed end

Description : Deflection of a simply supported beam when subjected to central point load is given as ________ a. (Wl /16 EI) b. (Wl2/16 EI) c. (Wl3/48 EI) d. (5Wl4/ 384EI)

Last Answer : c. (Wl3/48 EI)

Description : Maximum deflection in a cantilever beam with UDL w over the entire length will be a.wL4/4EI b.wL4/12EI C.wl4/ 8EI d.None.

Last Answer : C.wl4/ 8EI

Description : The maximum deflection due to a load W at the free end of a cantilever of length L and having  flexural rigidity EI, is  (A) WL²/2EI (B) WL²/3EI (C) WL3 /2EI (D) WL3 /3EI

Last Answer : (D) WL3 /3EI

Description : In continuous beam, the intermediate beams are subjected to a. some bending moment b. no bending moment c. no slope d.no deflection

Last Answer : a. some bending moment

Description : Differences in deflections between two points A and B by the moment area method is given by a.(Area of BMD diagram between A and B ).XB/2EI. b.(Area of BMD diagram between A and B).XB/3EI c.(Area of BMD diagram between A and B) .XB/EI d.None.

Last Answer : c.(Area of BMD diagram between A and B) .XB/EI

Description : .Differences in slopes between two points A and B by the moment area method is given by a.Area of BMD diagram between A and B /2EI. b.Area of BMD diagram between A and B /3EI. C.Area of BMD diagram between A and B /EI d.None.

Last Answer : C.Area of BMD diagram between A and B /EI

Description : A cantilever of length 3 m carries two point loads of 2 KN at the free end and 4KN at a distance of 1m from the free end .What is the deflection at the free end? Take E= 2×105 N/mm2and I= 108 mm4. a.2.56 mm b.3.84 mm c.1.84 mm d.5.26mm

Last Answer : c.1.84 mm

Description : For a fixed beam with UDL, maximum bending moment at end is a. wL2/12 b.wL2/24 c.wL2/36 d.wL2/48

Last Answer : a. wL2/12

Description : In a simply supported beam subjected to uniformly distributed load (w) over the entire length (l), total load=W, maximum Bending moment is (a) Wl/8 or wl2/8 at the mid-point (b) Wl/8 or wl2/8 at the end (c) Wl/4 or wl2/4 (d) Wl/2

Last Answer : (a) Wl/8 or wl2/8 at the mid-point

Description : In case of cantilever, irrespective of the type of loading the maximum bendry moment and maximum shear force occur at a.107 dynes b.Free end c.2/3 of the length, from the free end d.Centre of the beam e.Fixed end

Last Answer : e. Fixed end

Description : If continuous beam is overhanging then overhanging acts as a a.propped cantilever b.cantilever c.supported cantilever d.extended supported beam

Last Answer : b.cantilever

Description : n case of a cantilever beam having concentrated loads, shear force variation will be (a) Linear (b) Parabolic (c) Cubic (d) None

Last Answer : (d) None

Description : In case of a cantilever beam having concentrated loads, shear force variation will be (a) Linear (b) Parabolic (c) Cubic (d) None

Last Answer : d) None

Description : A beam is designed on the basis of a. Maximum deflection. b.Minimum deflection c.Maximum slope d.None.

Last Answer : a. Maximum deflection.

Description : Maximum slope in a S.S. beam with W at centre will be a.Wl2/ 16EI. b.Wl2/32EI. c.Wl2/48EI. d.None.

Last Answer : a.Wl2/ 16EI.

Description : Maximum slope in a S.S. beam with W at centre will be a.at the supports. b.at the centre c. In between the support and centre. d.None.

Last Answer : a.at the supports.

Description : Which of the following statements is/are true for a simply supported beam? a. Deflection at supports in a simply supported beam is maximum. b.Deflection is maximum at a point where slope is zero . c. Slope is minimum at supports in a simply supported beam. d. All of the above

Last Answer : b.Deflection is maximum at a point where slope is zero .